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INTRCDUCTION

Random vibration problems of nontinear systems have been
tackled using a variety of approaches. The most poputar and
perhaps the simplest method is the equivalent linearization
(Lin 1967) technique (ELT). Alternatives include perturbation
(Crandall 1973), Fokker-Planck equation (Spanas 1982}, clo-
sure (Ibrahim 1978; iyengar and Dash 1978), and highet-order
linearization (lyengar 1988a) methods. Except for simple sys-
tems under broad-band excitation, exact solutions are not
available, A problemn of considerable practical interest is a non-
linear system under narrow-band excitation. For exampte, this
can be the model of power-plant equipment vibrating under a
fioor excitation that is narrow-banded. The floor excitation it-
self may be caused by a ground-level earthquake that gets
strongly filtered by the primary structure to induce narrow-
band inputs to secondary systems.

Approximate analysis of the Duffing oscillator under nar-
row-band excitation has been presented by several investiga-
tors, Lyon et al. (1961), through experiments, and Lennox and
Kuak (1976) and Iyengar (1988b}, through numerical simu-
lations, showed that under certain conditions the amplitudes
show transitions between two levels. Efforts to understand this
through the usual ELT have not been very successful. ELT
leads to moment equations {Davies and Nandlall 1981; Iyengar
1989) showing multiple values for the response variance,
which in fact must have a unique value, The fact that the
respofise process may stay at two different amplitude levels
could only mean that the underlying process is highly non-
Gaussian and that the probability density function (PDF) of
the peaks of this process may be bimodal. The success of
approximate methods in deterministic systems is due to the
fact that the forms of the assumed solution have been reason-
ably correct, In random vibration problems, if ope were to
comectly estimate the probabilistic structure of the response
process, it is necessary for the approach to have inbuilt flexi-
bility to reflect possible non-Gaussianness. Thus a solution
form such as x = r cos(\f ~ 9) for the Duffing oscillator under
harmenic excitation leads to a cubic polynomial for # with
three possible solutions. If this property has to get probabil-
istically reflected in the narrow-band excitation problem, one
must arrive at g functional equation for the PDF p(r), the so-
lution of which may show multiple extrema. This line of ar-
gument leads 1o a new kind of linearization principle in which
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~ CONDITIONAL LINEARIZATION IN NONLINEAR RANDOM VIBRATI

By R. N. lyengar' and D, Roy?

In this paper, an improved probabllistic lnentkzatlon npproach ts developed 1o study the response
of nonlinear single degree of freedom (SDOF) systems under nartow-band Inputs. An lnlegral equation for the
probability density function (PDF) of the envelope is derived. This equation is solved using an iterative scheme,
The technique is applied to study the hardening type Duffing's oscillator under narrow-band excitalion. The
results comprrs favorably with those obtalned using numerical simutation, In particular, the blmodul nature of
the PDF for the tesponse envelope for certaln parameter ranges is brought out.

the nonlinear systetn is approximated by a linear system with
random coefficients. A simpler version of this approach was
described by Iyengar (1992) to obtain the response variance
of the Duffing oscillator under narrow-band excitation. The
present paper refines and extends the aforementioned to show
how & functional equation can be derived for the PDF of the
response peaks. The solution of this equation shows that the
peak PDF can be multimodal for some parameter values. Com-
parison with simulated results is found to be favorable,

CUBIC OSCILLATOR

‘The nonlinear system éonsidered is the hardening Duffing's
oscillator excited by a narrow-band noise, The system is de-
scribed by

3+ mwp + Wl + awdy =£0) m
Here the excitation f(r) is a filtered white noise given by
J+ 267 + N =W (2

(WIOW(LY) = IB(f — hY o] = H(4EN) (Gab)

The input bandwidth and center frequency are controlled by £
and X, respectively. For the linear case, with o = 0, the steady-

slate variance is

; lofwhl =& +

ol = (1 + ENR? + aEnh)]
1.

(1 — A -+ dnagl + EAME + mA)]

X=Now, E=tm . (db.c)

Under the influence of white-noise excitation, the hardening
system shows the response variance to be below its linear
value, namely o}. However, when f is narrow-banded, the var-
iance for a range of values of K can be greater than o}. With
this in view, it is convenient io introduce the nondimensional
variables

{4a)

x=yoy wol=g<ld (5a,b)
Now, the nonlinear sysiem to be analyzed will be
1+ ot + vl e =W, (6)

CONDITIONAL LINEARIZATION

For small values of € and £, the response is expected to be
at the frequency A. Therefore an approximation to the response
will be

x(0) = x,, sin(\1 — 0} M

Here x, is the random amplitude that is yet unknown. The .

nonkinear lerm . is replaced by ~yx ‘and the mean square error
over one cycle of oscillation is minimized as in the harmenic
linearization lechnique (Spanos and Iwan 1979), Since the am-
plitude and phase are slowly varying over one cyele, x,, and
8 can be treated as random variables. This gives :
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v = 07522 8)
The resulting linear equation is

TR+ 2nwk + wl(l + 0.75exi)x = floy (IgJ

Here x, is the unknown random peak amplitude, and thus
strictly speaking, this equation is still nonlinear. However for
random vibration analysis, since x,, is treated as a random var-
iable, the system is conditionally linear. In other words, the

process (xlx,) is Gaussian, The conditional vardance of x an
% are easily found to be

By = (M) (10a)

BLD -+ (1 + ERYR® + 4EnR)]

Wi = (1 + 0.75ex)[D? + 4ni(l + ERECL + 0.75ex2) + nh ]l
(10b)
D=(1 + 0.75ex%, — &Y (10c)
B = oy w'ey) (10d)
THENCU T (11a)
2
”_; DT ¥ Al +ix()1[§;|€§) 075 + a3 1P

The variance {x*) of x can be found if p(x,) is known. Since
X Is the maximum of x, there will be a compatibility condition
to be satisfied. Previously, under the assumption that x,, is
Rayleigh distributed, lyengar (1992) found out the response
variance by solving the moment compatibility condition

ol = J (' lx, p(x,) dx,, (12)
¢
where

‘ plx) = (xfolexp(—0.5x4/ad) ~ (13

The Rayleigh assumption for x,, excludes possible multimo-
dality in the PDF and thus is not the right choice. Alsa, it is
not clear what could be the proper functional form for the PDF,
To circumvent this difficully, it is argued as follows, An ap-
proximation of the form x = x, sin(At — 8) is strictly valid
only for a linear system (e = 0) under sinuscidal excilation,
Thus in the harmonic linearization using (7), x,, has to include

the effect of nonlinearity if one seeks an improvetnent beyond
{12) and (13). :

FERTURBATION SERIES FOR x,,

Here the effect of nonlinearity is included through a pertur-
bation power series in €. The solution of (6) under a sinusoidal
excitation may be taken as.

x=xg+ ex; + £x; + oo (14)

where the zero order solution is

Xo = rsin{ht — 8) (15)

With this, it easily fellows that
X+ 2net, + wlx = —wixd (16)
X + 2wt + ol = ~3widy, (n

Solutions for x, and x, can be obtained in terms of r and 8.
For example

X = —(075¢%D, )sin(\r — 8 — B))
+ (F74D)sin(3Nt — 38 — §,) ) (18}
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X = 2Tr 16D Dsin — 8 — 25)) + (3-716D,D,)sin{hs
T =0 = 25 — (9¥16D,Dsin(INt — 39 — B, — &)
— (3r8DDsin(3nr — 30 — 25,)

+ (3r¥16D,Dy)sin(5ht — 50 — B, — 0;) 19
where
D, = V(1 = K3 +.2nh)] (20a)
b, =1V - 9)'\")‘ + (6mh)) (205}
Dy = V(1 ~ 2587 + (10m3)] (200)
8, = tan~"[2nAA(1 — R} (20d)
8, = tan "' [6nA/(L — 9RY)) . (200
By = tan~'[10mA/L — 25R)] 201 .

Now, collecting and decomposing the higher-frequency com-
ponents in terms of sin(Ar — 6} and cos(ht — @) .

x() = By + K, cos(2ht — 20 — B;) + K, cos(2h — 20 — B,
= B + K, cos(2nr — 20 — 2B,) + K, cos(d\e —~ 40 — B,
— By)Isin(ht — 8) + [B, + K, sin(2At ~ 20 — By
+ K, sin(2n — 20 — &, — §;) + K, sin(2ht — 20 — 25,
+ K, sin(d\¢ - 48 ~ & — &ylcos(hr — 8) 21)

where By, By, K, Ks, Ks, and K, = coefficients readily obtained
by substituting {18) and (19) in the perturbation series (14).
This can be further represented in the form of (7). Thus

xh=r = eCrt + G + - (22)

where €, = (3/2D,)cos 8; and C, = [(9/16D}) + (27/8D})cos
28, + (3/8D,Dy)cos(8, + 5,) + (M16DY)].

INTEGRAL EQUATION FOR p{(n)

Since x,, is expressed in terms of r, one can treat r as the
unknown. The conditioned process {xr) is Gaussian, the mo-
ments of which can be obtained from (10) and (11) where
x2 is given by (22). Now, for a sample of the narrow-banded
response process x(f), x. may be trealed as supix()lr € (0,
2N}l = /x* + Y\ Thus focusing attention on the con-
ditioned Guussian process (x|#), the steady-state PDF of the
.conditioned maxima (x.!r) can be found from (9) as

(xR = (ca/ppydexp[—xi(p}
+ phApipdilxiet — pivapinl) 23

where p,; and |, = conditional variznces as given by (10) and
(11); and [, = modified Bessel's function of order zero. Hence,
two possible representations for x,, have been argued out, Al-
though the first one, as given by (22), is an algebraic relation-
ship between x,, and r, the second one, given by (23), is simply
the envelope distribution of the conditionally Gaussian process

(x1r). These two refations should, in turn, be compatible. The
compatibility condition is

J p(x,,.lr)p‘(r) dr = p(x,) (24)

Here the right-hand side is expressible through (22) in terms

of r. Hence (24) is an integral equation for finding p(r). This
is solved through an iterative scheme to amrive at p(#) and -

hence p(x.).
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ITERATIVE SCHEME
To start with, r is assumed to be Rayleigh distributed, i.e.
pdn) = WiaYexp(~r20") | (25)
This is the zero iterate for p(r), the unknown in (24). However,

in this equation o* is an unknown; but this can be obtained
by solving

J J P pelr) dr dx,, = 1 T (26)
L] (]

[

where po(r) Is substituted in (24) 1o obtain the corresponding
Pofx.). Now, since (22) is a memory-less transformation con-
necting r and x,,, the previous pg(x..) is transformed to obtain
the nest Bernta py(r). This process 1s repeated untl p(r) nnd
pilx,) converge for all values of r, )

NUMERICAL RESULTS .

Eqs. (25) and (26) have been solved for a nonlinear system
with £ = 0.3, 1 = 0.08, and € = 0.02. The frequency parameter
has been varied with values & = 1, 2, and 3. The numerically
simulated variance and its comparison with the equivalent lin-
ear predictions have been previously reported by Iyengar
(1992) and thus are not repeated hete. In Figs. 1, 2, and 3, the
present theoretical predictions for p(x,,) are compared with nu-
merical simulations. The iterative solution to (24) converged
in about 10 iterations in all the cases. '

In all the figures, the €°, €', and £® order approximations
have been reported. For A = 1 and 3, the difference among the
three epproximattons are negligible, In the case of A=2 the
€’ order approximation is inadequate to predict the biomodal
peak distributions. 1t is clear that, in this case, inclusion of
higher-order terms in (22) may lead to still better results.
Keeping in view the fact that the simulated results refer to the
peak PDF whereas the prediction is for the envelope PDF, the
comparison between the two results is satisfactory.

SUMMARY AND CONCLUSIONS

The present approach is essentially an extension of and an
improvement over the probabilistic linedrization scheme ear-
lier introduced by Iyengar (1992), In contrast with the earlier
work, the present technique directly obtains the FDF for the
envelope by deriving an integral equation that needs to be
solved iteratively. To carry out the iterative scheme, it is im-
portant to establish a functional relationship between r and x,,,
the enveloping processes of the zero order and higher orders,
respectively, and aproximated over one cycle of the forcing as
random variables due to their slowly varying nature. This, in
turn, is accomplished by expanding the solution process in
terms of a power series in €, the nonlinearity parameter. The
results show a considerable improvement over the earlier ap-
proach, especially for the bimodal case corresponding to A =
2. The approach, however, may nol be accurate enough for
higher values of €. It would also be of inlerest to see How the
present technigue works for other classes of nonlinear oscil-
lators, for example, the limit cycle and the hysteretic sysiems.
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APPENDIXII. NOTATION

The following symbols are used in this paper:

By, By K,, Ky, X, coelficients in representation for x,

Ci. €y = coefficients in functional relationship be-

tween x,, and r;

D, B = parameters in expressions for conditional
variances;

Dy, Dy D = frequency responses;

f{) = input random process obtained as output of

linear flter;
I = strength of white noise;
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maodified Bessel's function of order 0;
index;

PDF for x,.;

PDF for r;

conditional PDF for x,, given r;

iterates for p(x,.);

iterates for p{r);

random amplitudes;

time; :

Gaussian white noise;

nondimensionalized random process corre-
sponding to y(1):

terms of various orders In perturbed series
solution for x(1);

random ‘process representing solution for =
Duffing's equation under f(r);

nonlinearity parameters;

coefficient in equivalent linear term;

Dirac delta function;

damping ratios;

normalized damping ratios;

phase lags in radians;

natural frequencies;

normalized natural frequency;

conditional variances of x given x,.!
steady-state variance of process f{1)
steady-state variance of linear equation cor-
responding to € = 0; and

variance of process x(1).




