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Abstract

Landslides are one of the most destructive phenomena of nature that cause damage to both property and life every year, and
therefore, landslide susceptibility zonation (LSZ) is necessary for planning future developmental activities. In this paper, apart from
conventional weighting system, objective weight assignment procedures based on techniques such as artificial neural network
(ANN), fuzzy set theory and combined neural and fuzzy set theory have been assessed for preparation of LSZ maps in a part of the
Darjeeling Himalayas. Relevant thematic layers pertaining to the causative factors have been generated using remote sensing data,
field surveys and Geographic Information System (GIS) tools. In conventional weighting system, weights and ratings to the
causative factors and their categories are assigned based on the experience and knowledge of experts about the subject and the
study area to prepare the LSZ map (designated here as Map I). In the context of objective weight assignments, initially the ANN as
the black box approach has been used to directly produce an LSZ map (Map II). In this approach, however, the weights assigned
are hidden to the analyst. Next, the fuzzy set theory has then been implemented to determine the membership values for each
category of the thematic layer using the cosine amplitude method (similarity method). These memberships are used as ratings for
each category of the thematic layer. Assuming weights of each thematic layer as one (or constant), these ratings of the categories
are used for the generation of another LSZ map (Map III). Subsequently, a novel weight assignment procedure based on ANN is
implemented to assign the weights to each thematic layer objectively. Finally, weights of each thematic layer are combined with
fuzzy set derived ratings to produce another LSZ map (Map IV). The maps I–IV have been evaluated statistically based on field
data of existing landslides. Amongst all the procedures, the LSZ map based on combined neural and fuzzy weighting (i.e., Map IV)
has been found to be significantly better than others, as in this case only 2.3% of the total area is found to be categorized as very
high susceptibility zone and contains 30.1% of the existing landslide area.
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1. Introduction

Landslides are amongst the most damaging natural
hazards in the hilly regions. The study of landslides has
drawn global attention mainly due to increasing
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awareness of its socio-economic impacts and also
increasing pressure of urbanization on the mountain
environment (Aleotti and Chowdhury, 1999). Land-
slides have represented 4.89% of the natural disasters
that occurred worldwide during the years 1990 to 2005
(www.em-dat.net). According to Schuster (1996) and
Ercanoglu and Gokceoglu (2004), this trend is expected
to continue in future due to increased unplanned
urbanization and development, continued deforestation
and increased regional precipitation in landslide prone
areas due to changing climatic patterns. Hence, the
identification of landslide-prone areas is essential for
safer strategic planning of future developmental activ-
ities in the region. Therefore, Landslide Susceptibility
Zonation (LSZ) of an area becomes important whereby
the area may be divided into near-homogeneous
domains and ranked according to degrees of potential
hazard due to mass movements (Varnes, 1984). The area
may thus be categorized as very high susceptibility
(VHS), high susceptibility (HS), moderate susceptibility
(MS), low susceptibility (LS) and very low susceptibil-
ity (VLS) zones to produce an LSZ map.

Landslide susceptibility zonation studies in the
Himalayas have conventionally been carried out based
on manual interpretation of a variety of thematic maps
and their superimposition (Anbalagan, 1992; Pachauri
and Pant, 1992; Gupta et al., 1993; Sarkar et al., 1995;
Mehrotra et al., 1996; Virdi et al., 1997). However, this
approach is time consuming, laborious and uneconom-
ical with data collected over long time intervals. In recent
times, due to the availability of a wide range of remote
sensing data together with data from other sources in
digital form and their analysis using GIS, it has now
become possible to prepare different thematic layers
corresponding to the causative factors that are respon-
sible for the occurrence of landslides in a region (Gupta
and Joshi, 1990; van Westen, 1994; Nagarajan et al.,
1998; Gupta, 2003). The integration of these thematic
layers with weights assigned according to their relative
importance in a GIS environment leads to the generation
of an LSZ map (Gupta et al., 1999; Saha et al., 2002;
Sarkar and Kanungo, 2004; Saha et al., 2005). However,
in the studies cited above, the weights were assigned on
the basis of the experience of the experts about the
subject and the area. The weighting system was thus
highly subjective and might therefore contain some
implicit biases towards the assumptions made.

For minimizing the subjectivity and bias in the weight
assignment process, quantitative methods, namely,
statistical analysis, deterministic analysis, probabilistic
models, distribution-free approaches and landslide
frequency analysis may be utilized. During the last
5 years, bivariate statistical models (Lin and Tung, 2003;
He et al., 2003; Suzen and Doyuran, 2004; Saha et al.,
2005; etc.), multivariate methods (Dhakal et al., 2000;
Clerici et al., 2002; etc.) and probabilistic prediction
models (Chi et al., 2002a; Lee et al., 2002a,b; Lan et al.,
2004; etc.) have been implemented for LSZ studies.
Apart from these methods, some work on distribution-
free approaches such as fuzzy set based methods (Chi
et al., 2002b; Gorsevski et al., 2003; Tangestani, 2003;
Metternicht and Gonzalez, 2005; Ercanoglu and Gok-
ceoglu, 2004), artificial neural network (ANN) models
(Arora et al., 2004; Gomez and Kavzoglu, 2005;
Yesilnacar and Topal, 2005) and neuro-fuzzy models
(Elias and Bandis, 2000; Lee et al., 2004; Kanungo et al.,
2005) have recently been attempted for LSZ studies. Due
to some success of neural networks and fuzzy set theories
in these studies, an attempt has been made here to
develop an objective procedure that takes into account
the advantages of both neural networks and fuzzy set
theory for landslide susceptibility zonation in a part of
Darjeeling Himalayas.

2. Weight assignment procedures

The basic pre-requisite for landslide susceptibility
zonation studies is the determination of weight and
rating values representing the relative importance of
factors and their categories respectively for landslide
occurrence. These weights and ratings can be deter-
mined based on the subjective expert opinions as well as
based on an objective analysis. Four different proce-
dures have been implemented here to determine the
weights and ratings in order to generate LSZ maps.
This section highlights the salient features of these
procedures.

2.1. Conventional weighting procedure

In this weighting scheme, factors and their categories
are assigned numerical values based on the experience of
experts on the subject and about the study area. The
numerical values (generally at an ordinal scale from 0 to
9) assigned to factors are termed as weights and those
assigned to categories of factors are termed as ratings
(Lee et al., 2004). Higher is the numerical value of
weight or rating, greater is its influence on the occurrence
of landslide.

2.2. Artificial neural network procedure

ANN, which is a useful technique for regression and
classification problems, has been successfully applied in



Fig. 1. A schematic diagram of artificial neural network for LSZ using ANN black box procedure.
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other fields, and promises to be suitable for the deline-
ation of areas prone to landslide activity. It has been
found that ANNs have several advantages for LSZ
mapping, as these are non-linear and thus have the
capability to analyse complex data patterns. Also, ANN
can process data at varied measurement scales such as
continuous, ordinal and categorical data, a scenario
which is often encountered in LSZ mapping.

An ANN comprises of a number of neurons that work
in parallel to transform input data into output classes. A
feed-forward multilayer network is generally adopted,
which consists of three layers namely input, output
and hidden layers in between these two (Paola and
Schowengerdt, 1995). Each layer in a network contains
sufficient number of neurons depending on the specific
application. The neurons in a layer are connected to the
neurons in the next successive layer and each connection
carries a weight (Atkinson and Tatnall, 1997). The input
layer receives the data from different sources (e.g., the-
matic layers). Hence, the number of neurons in the input
layer depends on the number of input data sources. The
hidden and output layers actively process the data. The
number of hidden layers and their neurons are often
determined by trial and error (Gong, 1996). The number
of neurons in output layers is fixed by the application and
is represented by the class being mapped (e.g., LSZ
classes in the present case). Each hidden neuron responds
to the weighted inputs it receives from the connected
neurons from the preceding input layer (Lee et al., 2004).
Once the combined effect on each hidden neuron is
determined, the activation at this neuron is determined via
a transfer function (Yesilnacar and Topal, 2005). Any
differentiable nonlinear function can be used as a transfer
function, but a sigmoid function is generally used though
there are many other functions (Schalkoff, 1997). The
sigmoid function constrains the outputs of a network
between 0 and 1.

An important characteristic of a neural network is its
capability to learn from the data being processed. The
network weights are adjusted in the training process,
which can be executed through a number of learning
algorithms based on backpropagation learning (Ripley,
1996; Haykin, 1999; Zhou, 1999; Lee et al., 2004;
Gomez and Kavzoglu, 2005; Yesilnacar and Topal,
2005). The most widely used backpropagation algo-
rithms are gradient descent and gradient descent with
momentum. These are often too slow for the solution of
practical problems. The faster algorithms use standard
numerical optimizers such as conjugate gradient, quasi-
Newton and Levenberg–Marquardt approach. In this
study, Levenberg–Marquardt algorithm (implemented
as TRAINLM in MATLAB software) has been used for
training the neural network. The details of this algorithm
can be found in Hagan and Menhaj (1994) and Hagan
et al. (1996). Unlike gradient descent algorithms, it does
not consider learning rate and momentum factor as its
parameters. However, the main scalar parameter in-
volved in this algorithm is mu (μ), which is modified in
an adaptive fashion after giving an initial random value.

In back propagation learning, the difference (i.e.,
error) between the neural network outputs and target
outputs is back propagated through the neural network
and is minimized by updating interconnection weights
between the layers (Arora et al., 2004; Lee et al., 2004).
The process of back propagating the error is repeated
iteratively until the error is minimized to an acceptable
value and the adjusted weights are obtained, which are
then used to determine the network outputs. The per-
formance of the network depends on the accuracy ob-
tained over a set of testing dataset. If the network is
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trained and tested to an acceptable accuracy, then the
adjusted weights are used to determine the outputs of
each unknown data sample. This approach has been
called as ANN black box approach.

In this study, a feed forward multi-layer ANN with
one input layer, two hidden layers and one output layer
has been considered to produce an LSZ map. The input
layer contains 6 neurons each representing a causative
factor that contributes to the occurrence of the landslide.
The output layer contains a single neuron representing
one of the five LSZ classes (VLS, LS, MS, HS and
VHS) for a given set of input values for a pixel.

By varying the number of neurons in both the hidden
layers, the neural networks are run several times to
identify the most appropriate neural network architec-
ture based on training and testing accuracies. A
schematic diagram of the best neural network architec-
ture is given in Fig. 1. The whole dataset of the study
area is then processed with the most accurately trained
and tested network to generate the LSZ map of the study
area. The neural network processing has been imple-
mented in Neural Network Tool Box of MATLAB
Software.

2.3. Fuzzy set based procedure

Fuzzy relation concept defined by Zadeh (1973) is
based on the theory of fuzzy sets. A fuzzy set can be
explained as a set containing elements that have varying
degrees of membership in the set (Ross, 1995). Fuzzy
relations play an important part in fuzzy modeling and
are based on the philosophy that everything is related to
some extent (Dubois and Prade, 1980). In this paper, one
of the well known similarity methods, cosine amplitude
method (Ross, 1995; Ercanoglu and Gokceoglu, 2004),
has been used to determine the relationship between the
landslide occurrence and the categories responsible for
such activity. The membership degrees of categories of
each factor are determined by establishing the strength
of the relationship (rij) between the existing landslides
and the categories.

Let n be the number of categories of a thematic layer
represented as an array X={x1, x2, …, xn}, each of its
elements, xi, is a vector of pixels p (i.e., the size of the
image in the present context) and can be expressed as,

xi ¼ fxi1; xi2;: : :; xipg ð1Þ

Each element of a relation, rij, results from a pairwise
comparison of a category of a thematic layer i (i.e., layer
corresponding to a causative factor) with a category of
thematic layer j (i.e., landslide distribution layer), say xi
and xj containing elements xik and xjk respectively. In the
cosine amplitude method, for example, rij (membership
grades) between categories of a thematic layer and that
of the landslide distribution layer are computed by the
following equation with its values ranging from 0 to 1
(0≤ rij≤1).

rij ¼
Pp
k¼1

xikxjk

� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPp

k¼1
x2ik

� � Pp
k¼1

x2jk

� �s ð2Þ

The rij value for a category can be defined as the ratio
of total number of landslide pixels in the category to the
square root of the multiplication of total number of pixels
in that category and the total number of landslide pixels
in the area. Values of rij close to 0 indicate dissimilarity,
whereas values close to 1 indicate the similarity between
the two datasets. Eq. (2) leads to (n−1) rij images
corresponding to each category of the thematic layers
under consideration. These images show rij values at the
pixels belonging to the category in question, whereas rest
of the pixels indicate 0 values. The corresponding rij
images for various categories of a thematic layer are
composited together to generate an rij image for that
thematic layer and is represented as Rl, where l varies
from 1 to t thematic layers belonging to each causative
factor (e.g., 6 thematic layers in the present case). The
fuzzy processing has been implemented in MS Excel
spreadsheet and ArcView GIS software.
2.4. Combined Neural and fuzzy procedure

In another procedure, the ANN connection weights
may be used to characterize the input data sources (e.g.,
the causative factors) in terms of ranks or weights. In this
process, the connection weight matrices for input–
hidden, hidden–hidden and hidden–output layers are
obtained for a two-hidden layer network. Simple matrix
multiplications of these weight matrices give rise to the
final weight matrix corresponding to the factors (Olden
et al., 2004). For example, if a network of 6/14/8/1
architecture (representing 6 neurons in the input layer, 14
neurons in the 1st hidden layer, 8 neurons in the 2nd
hidden layer and one neuron in the output layer) is con-
sidered, connection weight matrices of 6×14, 14×8 and
8×1 are obtained. The product of 6×14 and 14×8
matrices gives a resultant matrix of 6×8. Subsequently,
the product of 6×8 and 8×1 matrices gives an output



Fig. 2. Steps for computations of connection weight matrices of ANN to characterize input data layers in terms of ranks and weights (in the
present study, I1—Land use land cover, I2—Lithology, I3—Slope, I4—Aspect, I5—Drainage buffer and I6—Lineament buffer); Note: In step [5],
X: 1–6; Y: 1–8.
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Fig. 3. The study area with landslide distribution in Darjeeling Himalayas.
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matrix of 6×1 which corresponds to the weights of 6
factors. The absolute values of these weights are
considered in the present work to rank the factors
meaning thereby that the factor with maximum absolute
weight is assigned as rank 1 and the factor with the
minimum absolute weight as rank 6. This has been
illustrated in Fig. 2.

3. Study area

The Darjeeling Himalayas, encompassing a total area
of 3000 km2 rise abruptly from the alluvial plains of
West Bengal and attain a maximum elevation of about
2600 m. The area lies between Sikkim in the North,
Bhutan in the east and Nepal in the west. The southern
foot hill region is characterized by East–West trending
highly dissected platform of terrace deposits. The
southerly flowing river Tista approximately divides the
Darjeeling Himalayas into two parts, the eastern and the
western parts occupied by Kalimpong and Darjeeling
hills respectively. The Tista River however, does not fall
within the study area. The study area encompasses
Darjeeling hill which lies between latitude 26°56′–
27°8′N and longitude 88°10′–88°25′E and covers an
area of about 254 km2 (Fig. 3). The main habitat areas
are Darjeeling, Sonada and Sukhiapokhri.
The study area is highly dissected by many ridges and
valleys. The maximum elevation of 2584 m occurs at the
Tiger hill. The area is dominated by slopes ranging
between 15° and 35° while steep slopes of N35° occupy
smaller area. In general, the gentle slopes of 0–15° were
found on the ridges and at places in the region of lower
relief also.

The Darjeeling Himalayas lie within the Lesser and
Sub Himalayan belts. The tectonic units in the area
occur in inverted order of stratigraphic superposition.
Various rock groups have been named locally (Acharya,
1989). The Daling group of rocks comprises of low-
grade metamorphic rocks and includes slate, phyllite,
schist, quartzite, greywacke and epidiorite. The Darjee-
ling Group consists primarily of foliated gneisses. Rocks
of the Paro Sub-group, which have similar character-
istics to the Darjeeling Group, are present at lower
elevations.

The annual rainfall in the area is of the order of
3000 mm to 6000 mm. The rainfall pattern is highly
seasonal with a maximum rainfall during the monsoon
season from June to October. The main land use practice
in the study area is tea plantation. The agriculture land is
mostly developed around the habitat areas. In general,
the area is dominated by thick forest particularly in the
eastern part.
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4. Thematic data layer preparation

Various thematic data layers corresponding to
causative factors namely lithology, slope, aspect, linea-
ments, land use land cover and drainage have been
prepared. These factors fall under the category of pre-
paratory factors, which make the slope susceptible to
movement without actually initiating it and thus, are
considered responsible for the occurrence of landslides
in the region for which pertinent data can be collected
from available resources as well as from the field. The
triggering factors such as rainfall and earthquakes, set off
the movement by shifting the slope from a marginally
stable to an actively unstable state. Further, the attributes
of the ground (internal factors) in terms of landslide
susceptibility have been considered here. Rainfall and
earthquakes are external factors and temporal phenom-
ena. Also, past data on these external factors in relation to
landslide occurrence are not available. Therefore, these
factors have not been included in this study. A thematic
layer corresponding to the landslide distribution map has
also been prepared to establish a spatial correlation
between existing landslides and the causative factors,
which will be helpful for the preparation and evaluation
of LSZ maps of the area using different weighting
procedures.

The IRS-1C-LISS-III (acquired on 22nd March,
2000) and 1D-PAN (acquired on 3rd April, 2000) data
along with Survey of India topographic maps at
1:25,000 and 1:50,000 scale, and the geological map
at 1:250,000 scale published by Acharya (1989) are the
main data sources used to generate these thematic data
layers. Extensive field data have been collected during
the years 2001 to 2003 to collect information on existing
landslide distribution to assist in creation of training and
testing datasets, finding out fuzzy membership values
and validation of LSZ maps. The months of March and
April were preferred for field data collection as these
coincided with the date of remote sensing data
acquisition. All the thematic data layers have been
resampled to match the nominal spatial resolution (i.e.,
25 m) of IRS-LISS-III multispectral image.

4.1. Landslide distribution map

The mapping of existing landslides is essential to
study the relationship between the landslide distribution
and the causative factors. As, it is not possible to map
each and every landslide through field surveys in such a
terrain, a comprehensive mapping of landslide has been
undertaken through remote sensing image interpreta-
tion. The identification of landslides on remote sensing
image is based on the spectral characteristics, shape,
contrast and the morphological expression. In general,
there is a distinct spectral contrast between landslides
and the background area. High spatial resolution IRS-
1C-PAN and PAN-sharpened LISS-III images have been
used for landslide mapping. On the PAN image, land-
slides appear as features of very light tones due to rock
debris without any vegetation on the slope. After
enhancing the contrast of the PAN image, landslides
occurring in barren areas can also be identified. A few
old landslides are identified on the basis of their shape,
landform and drainage. On the PAN-sharpened LISS-III
image, the landslides appear as bright-white features
(due to high reflectance) that are easily distinguished
from other features. Further, landslides are characterized
by fan shape, sharp lines of break in topography and
sometimes a local drainage anomaly. Often, the toe part
of the slide gives rise to a debris flow channel. Many of
the landslides identified on remote sensing images have
also been verified in the field.

A total of 101 landslides of varyingdimensions (180m2

to 27400 m2) have been identified from remote sensing
images and field surveys. A majority of landslides have
areal extent of 500 m2–2000 m2. Most of the observed
landslides are rock slides. However, in some cases, com-
plex types of failure are also possible.

The landslides thus identified have been digitized as
polygons in separate vector layers one each for remote
sensing derived and field mapped, which are then
merged into single landslide layer. This layer has been
converted to a rasterized landslide distribution map
(Fig. 3) for further analysis.

4.2. Digital elevation model and its derivatives

The Digital Elevation Model (DEM) is an excellent
source to derive topographic attributes responsible for
landslide activity in a region. Therefore, a DEM at a
spatial resolution corresponding to pixel size 25m� 25m
has been generated by digitization of contours on the
topographic maps. The DEM is subsequently used to
derive the slope and aspect data layers. Slope angle is one
of the key factors in inducing slope instability. The slope
data layer consists of 5 classes with 10° interval as per the
slope classification used in other studies (Anbalagan,
1992; Gupta et al., 1999; Dhakal et al., 2000). Aspect is
defined as the direction of maximum slope of the terrain
surface and has an indirect influence on slope instability.
In general, the south facing slopes have lesser vegetation
density as compared to the north facing slopes and hence,
the erosional activity is relatively more in the former case
(Sinha et al., 1975). The aspect data layer derived here
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represents nine classes, namely, N, NE, E, SE, S, SW, W,
NWand flat as per the classification given in other studies
(Sarkar and Kanungo, 2004; Saha et al., 2005).

4.3. Lithology

Different rock types (or lithology) have varied com-
position and structure, which contribute to the strength of
the material. The stronger rocks give more resistance to
the driving forces as compared to the weaker rocks, and
hence are less prone to landslides and vice versa. The
lithology data layer has been prepared by digitizing the
polygons from the co-registered geological map of
Sikkim–Darjeeling area (Acharya, 1989) in a vector
layer. Necessary modifications have also been incorpo-
rated in this vector layer after field verification. This
lithology data layer is later rasterized at 25 m spatial
resolution. The six rock types present in this data layer
are Darjeeling gneiss, Paro gneiss, Lingtse granite
gneiss, feldspathic greywacke, and quartzites of the
Paro sub-group and the Reyang group.

4.4. Lineaments

Lineaments are the structural features which describe
the zone/plane of weakness, fractures and faults along
which landslide susceptibility is higher. It has generally
been observed that the probability of landslide occur-
rence increases at sites close to lineaments, which not
only affect the surface material structures but also make
contribution to terrain permeability causing slope in-
stability. Lineaments have been interpreted from the
PAN and LISS-III images. The individual bands of LISS-
III image are enhanced using linear contrast stretching
followed with a 3×3 edge filters to highlight high fre-
quency features. Subsequently, all the four bands are
layer stacked to produce the edge-enhanced image which
has been used for visual interpretation of lineaments. The
lineaments have been interpreted based on the tonal
contrast, structural alignments and rectilinear trends of
morphological features and linear stream courses that are
conspicuous by their abrupt changes in the course. There
is no major thrust/fault reported in the study area, but
mega lineaments have been identified. The interpreted
lineaments have been digitized on-screen and subse-
quently rasterized to produce the lineament data layer.
Initially, buffer zones at 250 m intervals were created.
These buffer zones were spatially cross-correlated with
the landslide pixels in the area and it was observed that
98% of landslide pixels occurred in 1st two buffer zones
(up to 500 m). Hence, it was decided to consider four
buffer zones at 125 m intervals up to 500 m and another
buffer zone beyond 500 m to establish the influence of
lineaments on landslide occurrence. Thus, a lineament
buffer layer consisting of five classes such as 0–125 m,
125–250 m, 250–375 m, 375–500 m and N500 m has
been prepared.

4.5. Drainage

Many of the landslides in hilly areas occur due to the
erosional activity associated with drainage. Therefore, a
drainage data layer has been prepared by digitizing the
drainages from the topographic maps in a vector layer.
Later, this layer has been overlaid on IRS-LISS-III image
for updating the drainages. This was felt necessary as
most of the 1st order drainages, which were not present
on the topographic maps, could be interpreted from the
LISS-III image, which also showed change in the course
of the river and other major drainages at some places.
The ordering of the drainage has been performed on the
basis of Strahler's classification scheme (Strahler, 1964).
Drainages up to 6th order have been observed in the
study area. Subsequently, the vector layer has been
rasterized at 25m spatial resolution. Initially, 25m buffer
zones on either side of the drainages for all the drainage
orders were created. It was observed from the spatial
correlation of landslide distribution in these buffer zones
that majority of landslide pixels occurred in the 1st and
2nd order drainage buffers only. Therefore, 25 m buffer
zones around these drainages only have been considered
to create a drainage buffer layer for further analysis.

4.6. Land use land cover

Land use land cover is also a key factor responsible
for landslide occurrences. The incidence of landslide is
inversely related to the vegetation density. Hence, barren
slopes are more prone to landslide activity as compared
to the forest area. Eight dominant land use land cover
classes namely thick forest, sparse forest, tea plantation,
agriculture, barren, built up, water bodies and river sand
have been considered similar to other studies (Sarkar and
Kanungo, 2004; Saha et al., 2005). A very small portion
of the study area is covered by cloud and its shadow in
the LISS-III image. Initially, this portion was masked.
The four spectral bands of LISS-III image, Digital
Elevation Model (DEM) and Normalized Difference
Vegetation Index (NDVI) image have been considered to
prepare a land use land cover map in a multi-source
classification process using the most widely adopted
maximum likelihood classifier. The map has been pre-
pared at an overall classification accuracy of 94.7%.
Subsequently, masked portion of the land use land cover



Fig. 4. Flow diagram showing different stages of preparing LSZ map using conventional weighting procedure.
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map thus prepared has been filled with the land use land
cover information obtained from field surveys to
generate the final land use land cover layer.

5. Implementation of various procedures for LSZ

The LSZ mapping was performed in GIS environ-
ment to categorize each and every pixel of the dataset to
one of the landslide susceptibility zones. GIS tool allows
for the storage and manipulation of information con-
cerning different factors as distinct layers and thus
provide an excellent tool for LSZmapping. The thematic
data layers were prepared in GIS platform and the data
were stored as attributes for further analysis. The weights
and ratings of the thematic layers and their categories
respectively were determined using four different
weighting procedures as mentioned earlier. All the four
procedures were implemented in ArcView GIS software
to generate LSZ maps.

5.1. LSZ using conventional weighting procedure

5.1.1. Implementation
The conventional weighting procedure involves as-

signment of weights and ratings to the thematic layers
and their categories respectively based on the knowledge
of the study area and the experience on the subject.
Different steps of this procedure for LSZ are given in Fig.
4. Such weighting scheme was used by Sarkar and
Kanungo (2004) with a different combination of them-
atic layers and their categories.

In the study area, it was observed that most of the
landslides were associated with drainage channels and
hence the maximumweight was assigned to the drainage
layer. Also, maximum rating of 9 was assigned to 1st
order drainage buffer category as most of the landslides
initiate from the lower order drainages. The next
important factor considered was the lineament. Here,
the maximum rating was given to the 0–125m lineament
buffer category as the nearness to the lineaments controls
the occurrence of the landslide. Since the steeper slopes
are more prone to landslide, the slope classes were given
ratings in the descending order. The competent rocks
such as quartzite, greywacke are less susceptible to
landslides than the gneisses as more number of land-
slides are observed in gneissic rock in the field. Hence,
the ratings to lithology categories were assigned ac-
cordingly. Occurrence of landslides also depends on the
type of the land use land cover. Barren slopes are more
susceptible to erosion as compared to areas with thick
forest and hence, maximum rating was assigned to the
barren slopes and minimum to the thick forest. The slope
aspect has an indirect influence on slope instability.
Based upon the landslide distribution, south and east



Table 1
Weights and ratings for thematic layers and their categories
(conventional weighting procedure)

Thematic layers Categories Weights Ratings

Drainage buffer 1. 1st order 9 9
2. 2nd order 5

Lineament buffer 1. 0–125 m 8 9
2. 125–250 m 7
3. 250–375 m 5
4. 375–500 m 3
5. N500 m 1

Slope 1. 0–15° 7 1
2. 15–25° 3
3. 25–35° 5
4. 35–45° 7
5. N45° 9

Lithology 1. Darjeeling gneiss 6 7
2. Feldspathic greywacke 3
3. Paro gneiss 5
4. Lingse granite gneiss 9
5. Paro quartzite 1
6. Reyang quartzite 1

Land use land cover 1. Agriculture land 4 5
2. Tea plantation 3
3. Thick forest 1
4. Sparse forest 7
5. Barren land 9
6. Habitation 2
7. Water body 0
8. River sand 0

Aspect 1. Flat 1 0
2. North 1
3. Northeast 4
4. East 7
5. Southeast 8
5. South 9
7. Southwest 6
8. West 3
9. Northwest 2
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facing slopes were considered more prone to landslides
than the other slopes (Dhakal et al., 2000). Considering
these facts and field observations, ratings for slope aspect
categories were assigned accordingly. The weights and
ratings thus assigned to each thematic layer and their
categories are given in Table 1.

The weighted thematic data layers were generated by
algebraically multiplying the weight of the layer with the
ratings of the corresponding categories of each layer. In
the present case, six weighted thematic data layers namely
lithology, land use land cover, slope, aspect, lineament
buffer and drainage buffer were produced. These layers
were laid over one another and arithmetically added ac-
cording to the following equation to generate a Landslide
Susceptibility Index (LSI) map in GIS,

LSI ¼ Liþ Luþ Slþ Asþ Lbþ Db ð3Þ
where Li, Lu, Sl, As, Lb and Db are abbreviations for the
weighted thematic layers for lithology, land use land
cover, slope, aspect, lineament buffer and drainage buffer
respectively.

The LSI values range from 21 to 310, whichwere then
categorized to produce landslide susceptibility classes. A
judicious way for such classification is to search for
abrupt changes in values (Davis, 1986). The classifica-
tion procedure reported by Sarkar and Kanungo (2004)
was followed. The class boundaries were drawn at LSI
values of 68, 137, 176 and 236 to obtain five sus-
ceptibility zones. The LSZ map (referred here as Map I),
thus obtained is shown in Fig. 5a. The area covered by
five different landslide susceptibility classes and the area
of landslides occupied per class have also been deter-
mined (Table 2).

5.1.2. Analysis of the output LSZ Map I
The five susceptibility zones in LSZ Map I were

distributed all over the study area. The map did not show
any definite pattern for the distribution of susceptibility
zones. It can be inferred from Table 2 that 33.3% of HS
and VHS areas together could predict 58.7% of existing
landslide area. It was again observed from this map that
the VHS and HS zones represented mostly the 1st and
2nd order drainage buffer areas. This happened as the
drainage layer was assigned the maximum weight in this
conventional procedure.

5.2. LSZ using ANN Black Box procedure

5.2.1. Implementation
The flow diagram indicating the different steps fol-

lowed in this procedure is shown in Fig. 6. Initially, the
field data on landslides (i.e., existing landslide distribu-
tion) were used to process the neural network. But, due
to less number of landslide pixels, the neural network
accuracies were found to be very low. Therefore, similar
to earlier studies (Arora et al., 2004), the map obtained
from conventional approach was considered as refer-
ence map, to derive representative sample sizes. Two
independent sets of training and testing data were
randomly selected with their land slide susceptibility
class known from the LSZ map I. Each dataset consisted
of 500 mutually exclusive pixels corresponding to each
landslide susceptibility zone (Foody and Arora, 1997).
The training dataset was used to train various network
architectures while the testing dataset was used to
control the overtraining of the network and to evaluate
the accuracy of the networks. The input values for
neural network processing correspond to the attributes
of the category of a thematic layer (as mentioned in 2nd



Fig. 5. LSZ maps using four different procedures. (a) Conventional weighting procedure. (b) ANN black box procedure. (c) Fuzzy set based
procedure. (d) Combined neural and fuzzy procedure.
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column of Table 2), which were normalized with
respect to the highest value within each thematic
layer. The normalized attribute values of different
landslide susceptibility zones (VLS, LS, MS, HS and
VHS) in the desired output in order of increasing
susceptibility correspond to 0.2, 0.4, 0.6, 0.8 and 1.0
respectively.

A total of 39 neural network architectures were
created by varying the number of neurons in both the
Table 2
Distribution of landslide susceptibility zones and landslides in different LSZ

Landslide susceptibility zones LSZ Map I LSZ Map II

Area
(%)

Landslide area
occupied per class
(%)

Area
(%)

Landsl
occupie
(%)

Very high susceptibility zone 6.5 10.6 7.7 10.3
High susceptibility zone 26.8 48.1 26.9 40.4
Moderate susceptibility zone 30.2 26.5 35.4 36.1
Low susceptibility zone 34.9 14.5 25.8 12.7
Very low susceptibility zone 1.6 0.3 4.2 0.5
hidden layers. The training process was initiated by
assigning arbitrary initial connection weights, which
were constantly updated until an acceptable accuracy
over training data was reached. These adjusted weights
obtained from the trained network were subsequently
used to process the testing dataset to examine the
generalization capability of the network.

The performance of the networks was evaluated by
determining both the training and testing data accuracies
maps

LSZ Map III LSZ Map IV

ide area
d per class

Area
(%)

Landslide area
occupied per class
(%)

Area
(%)

Landslide area
occupied per class
(%)

6.1 41.0 2.3 30.1
22.7 25.1 20.2 31.9
39.4 25.9 48.4 26.5
30.4 8.0 28.8 11.5
1.4 0.0 0.3 0.0



Fig. 6. Flow diagram showing different steps of ANN black box procedure.
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in terms of correlation coefficient, root mean squared
error (RMSE) (Freund, 1992) and also by the percent
correct or overall classification accuracy (Congalton,
1991). The training and testing accuracies for some
networks are given in Table 3. A variation in both
training and testing data accuracies can be seen as the
neural network architectures change. This infers that
there exists an optimal network architecture for a given
dataset. In the present case, the network architecture 6/
13/7/1 with training data accuracy (correlation coeffi-
cient of 0.918, root mean square error 0.112 and 74.4%
correct) and the testing data accuracy (correlation coef-
ficient of 0.896, root mean square error 0.126 and
72.6% correct) was the most appropriate one. There-
fore, weights obtained from this network were
subsequently used to obtain the network output of
each pixel. The output values ranged from 0.062 to
0.993, which were categorized into one of the five
landslide susceptibility zones (Table 4) to produce the
LSZ map in GIS. The LSZ map (referred here as Map
II) thus produced is shown in Fig. 5b. The area covered
by different landslide susceptibility zones and the area
of landslides occupied per class were also determined
(Table 2).

5.2.2. Analysis of the output LSZ Map II
It can be inferred from Table 2 that in case of

LSZ Map II, an area of 34.6% belonging to VHS and
HS zones put together could predict only 50.7%
landslide area. Further, the map does not depict any
definite pattern, as the susceptibility zones are
distributed all over the area. Moreover, the drainage
buffer layer has a major control on this LSZ map
also. This may be due to the fact that the LSZ Map I
was used as the reference map for training the
network to produce an ANN black box based LSZ
map (Map II). Hence, there is lot of similarity
between LSZ Maps I and II.



Table 3
Training and testing data accuracies of ANN black box procedure (bold indicates the best acceptable architecture in this study)

NN
architecture

Correlation coefficient RMSE Accuracy (%)

Training Testing Training Testing Training Testing Diff.

6–4–2–1 0.877 0.870 0.136 0.139 64.9 63.2 1.7
6–5–2–1 0.886 0.875 0.131 0.137 67.4 65.0 2.4
6–6–4–1 0.892 0.881 0.128 0.134 68.0 65.3 2.7
6–7–5–1 0.906 0.893 0.120 0.127 71.0 69.3 1.7
6–8–5–1 0.908 0.891 0.119 0.128 70.8 68.7 2.1
6–9–5–1 0.911 0.893 0.117 0.127 72.1 68.6 3.5
6–10–4–1 0.912 0.893 0.116 0.128 71.4 69.8 1.6
6–11–3–1 0.915 0.897 0.114 0.125 73.9 70.0 3.9
6–12–4–1 0.912 0.892 0.116 0.128 72.9 70.9 2.0
6–13–5–1 0.915 0.899 0.114 0.124 73.8 70.3 3.5
6–13–7–1 0.918 0.896 0.112 0.126 74.4 72.6 1.8
6–13–9–1 0.918 0.893 0.112 0.128 73.2 68.0 5.2
6–14–3–1 0.912 0.892 0.116 0.128 71.9 70.1 1.8
6–15–4–1 0.919 0.891 0.112 0.128 74.2 69.2 5.0
6–15–6–1 0.915 0.894 0.114 0.127 73.8 69.5 4.3
6–15–8–1 0.914 0.894 0.115 0.127 72.9 69.6 3.3
6–16–3–1 0.917 0.890 0.113 0.129 72.7 69.0 3.7
6–16–7–1 0.920 0.889 0.111 0.130 73.8 67.2 6.6

Table 4
Classification scheme for neural network output values for LSZ
mapping (ANN black box procedure)

Range of values Landslide susceptibility zone

0–0.3 Very low susceptibility zone
0.3–0.5 Low susceptibility zone
0.5–0.7 Moderate susceptibility zone
0.7–0.9 High susceptibility zone
N0.9 Very high susceptibility zone
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5.3. LSZ using fuzzy set based procedure

5.3.1. Implementation
In the fuzzy set based procedure, ratings of each

category of a given thematic layer were determined on
the basis of cosine amplitude similarity method, which
were then integrated in GIS by considering the weight of
each thematic layer as one (or constant) to generate the
LSZ map.

The cosine amplitude method as described earlier
was adopted to determine the ratings of the categories of
factors. The landslide distribution map and different
categories of thematic layers taken one at a time were
considered as two datasets for the computation of rating
or strength of relationship (rij). In the landslide dis-
tribution layer, pixels belonging to landslides were
assigned as 1 and the rest were assigned as 0. Similarly,
a value of 1 was assigned to a pixel belonging to a
particular category of a thematic layer and a value of 0 to
the rest. Hence, in total 36 data layers in binary form
were generated, which contained 35 layers of categories
of thematic layers (Table 5) and one layer of landslide
distribution. These layers were used for the determina-
tion of rij in GIS so as to generate 35 images denoting rij
values. The rij values thus obtained are listed in Table 5.

The corresponding rij images for various categories
of a thematic layer were combined together to generate
an Rl image for that thematic layer. The integration of
these Rl images for various thematic layers can be
performed in several ways to compute LSI values. The
simplest approach is to add this arithmetically which is
similar to any other conventional GIS integration pro-
cess. Alternatively, to bring fuzziness in the integration
process also, the use of fuzzy algebraic sum, fuzzy
algebraic product and fuzzy gamma operator can be put
forth. In view of this, the LSI values were computed in
two different ways: (a) using arithmetic integration and
(b) using fuzzy gamma operator. The performance of the
two methods was also examined. It was found that the
arithmetic overlay approach of thematic layer integra-
tion yielded better results than the fuzzy gamma ope-
rator for this dataset. Therefore, this approach was
considered further.

In the arithmetic overlay approach, the LSI for each
pixel of the study area was obtained using the following
equation,

LSI ¼
Xt

l¼1

ðRlÞ ð4Þ

The LSI values were found to lie in the range from 0.014
to 0.252. The observed mean (μo) and standard



Table 5
Fuzzy ratings for different categories of factors

Thematic layers corresponding to factors Categories Number of pixels Number of landslide pixels Fuzzy rating (rij)

Land use land cover Agriculture land 35,692 85 0.0488
Tea plantation 142,541 84 0.0243
Thick forest 72,685 38 0.0229
Sparse forest 131,088 65 0.0223
Barren land 14,237 58 0.0638
Habitation 10,341 9 0.0295
Water 970 0 0
River sand 1005 0 0

Lithology Darjeeling gneiss 73,371 77 0.0324
Feldspathic greywacke 45,938 61 0.0364
Paro gneiss 247,242 158 0.0253
Lingtse granite gneiss 20,926 15 0.0268
Paro quartzite 12,154 14 0.0339
Reyang quartzite 8089 14 0.0416

Slope 0–15° 51,380 23 0.0212
15–25° 146,974 117 0.0282
25–35° 144,495 131 0.0301
35–45° 50,246 58 0.0340
N45° 14,329 10 0.0264

Aspect Flat 2072 0 0
N 59,880 22 0.0192
NE 45,077 32 0.0266
E 52,868 73 0.0372
SE 45,689 77 0.0411
S 37,630 49 0.0361
SW 29,860 20 0.0259
W 55,132 26 0.0217
NW 79,148 40 0.0225

Drainage buffer 25 m along 1st order drainage 116,168 102 0.0296
25 m along 2nd order drainage 27,690 44 0.0399

Lineament buffer 0–125 m 146,761 243 0.0407
125–250 m 108,929 35 0.0179
250–375 m 72,380 36 0.0223
375–500 m 41,360 17 0.0203
N500 m 38,317 8 0.0144
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deviation (σo) from the probability distribution curve of
these LSI values are 0.150 and 0.024 respectively. The
LSI values were divided into five distinct classes
(susceptibility zones) with boundaries at (μo

−1.5 mσo), (μo−0.5 mσo), (μo+0.5 mσo) and (μo
+1.5 mσo) where m is a positive, non-zero value (Saha
et al., 2005) which controls in fixing the most
appropriate boundaries within the LSI range for
landslide susceptibility classes. This classification
scheme was adopted to fix the boundaries of classes
statistically and also to avoid the subjectivity in
arbitrarily selecting the boundaries of classes as was
done in the conventional procedure.

Several LSZ maps of the study area were prepared
for different values of m. The cumulative percentage of
landslide occurrences in various susceptibility zones
ordered from VHS to VLS were plotted against the
cumulative percentage of area of the susceptibility
zones for these LSZ maps. These curves, defined as
success rate curves (Chung and Fabbri, 1999; Lu and
An, 1999; Lee et al., 2002b), were used to select the
appropriate value of m to decide the suitability of a
LSZ map. Five representative success rate curves cor-
responding to m=0.8, 1.0, 1.1, 1.2 and 1.4 are shown
in Fig. 7a. The suitability of any LSZ map can be
judged by the fact that more percentage of landslides
must occur in VHS zone as compared to other zones. It
can be seen from Fig. 7a that for 10% of the area in
VHS zone, the curves corresponding to m=0.8, 1.0,
1.1, 1.2 and 1.4 show the landslide occurrences of
42.7%, 47.7%, 48.6%, 47.3% and 41.8% respectively.
Hence, for the first 10% area, the curve corresponding
to m=1.1 has the highest success rate. Based on this
analysis, the LSZ map corresponding to m=1.1
appears to be the most appropriate one for the study
area. Accordingly, the landslide susceptibility class



Fig. 7. Success rate curves to select the appropriate LSZ map. (a) Fuzzy set based procedure. (b) Combined neural and fuzzy procedure.

361D.P. Kanungo et al. / Engineering Geology 85 (2006) 347–366
boundaries were fixed at LSI values of 0.110, 0.136,
0.163 and 0.189. The LSZ map (referred here as Map
III) thus produced is shown in Fig. 5c. The area
covered by different landslide susceptibility zones and
the area of landslides occupied per class are also given
in Table 2.

5.3.2. Analysis of output LSZ Map III
The visual inspection of the LSZ Map III depicts

an overall NNE–SSW zonation trend in the area. It
has been observed that the southeast and east facing
slopes are more prone to landslides than other slopes.
Hence, it can be stated that there is a topographic
control over this LSZ map. Further, the spatial
correlation between the landslide distribution and the
LSZ map shows that 41.0% of landslide area has
predicted over 6.1% area of VHS zone. It can also be
stated that 28.8% of the total area occupied by HS and
VHS zones are able to predict 66.1% of the total
landslide area (Table 2).
5.4. LSZ using combined neural and fuzzy procedure

5.4.1. Implementation
The combined neural and fuzzy approach involves

three main stages:

1) determination of weights of thematic layers through
ANN connection-weight approach

2) determination of ratings for categories of thematic
layers using cosine amplitude method

3) integration of ratings and weights using GIS to arrive
at the LSZ map.

The methodology for LSZ using this procedure is
shown in Fig. 8.

A feed forward back-propagation multi-layer ANN
with one input layer, two hidden layers and one output
layer was considered to determine the weights of the
causative factors. The number of neurons in the input
layer equals the number of input thematic layers. The



Fig. 8. Flow diagram showing the combined neural and fuzzy procedure for LSZ mapping.
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data at each neuron of the input layer correspond to
the weighted normalized rating or rij of the correspon-
ding category (i.e., last column of Table 5). The output
layer consists of a single neuron representing presence
or absence of landslide for a pixel. Hence, the output
value is either 0 or 1. The number of neurons in the
hidden layers is varied by running the networks several
times to achieve the desired training and testing data
accuracies.

One set each of training, verification and testing data
were randomly generated from the study area. The
datasets consist of 226 pixels each, out of which 113
pixels were landslide pixels and rest 113 pixels were no
landslide pixels. All the pixels in the datasets were
mutually exclusive (Foody and Arora, 1997). The
training dataset was used to train different network
architectures while the verification dataset was used
simultaneously with the training dataset to control the
overtraining of the network. The testing dataset was
used to evaluate the accuracy of the networks. Similar to
ANN black box approach, the well known back-
propagation learning algorithm was used to train the
neural networks. 100 neural network architectures were
designed, trained and tested. The training process was
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initiated with arbitrary initial connection weights, which
were constantly updated until an acceptable accuracy
was reached. The training accuracy observed for the
networks was of the order of 75% to 90%.

The final adjusted weights of the trained network
were used to derive outputs of the testing data to
evaluate the performance of the network. The testing
accuracy observed for the networks was of the order of
60% to 70%. The adjusted weights of input–hidden,
hidden–hidden and hidden–output connections for each
network were captured for further analysis. Simple
matrix multiplication was performed on these weight
matrices to obtain a 6×1 weight matrix for each network
which represents the weights of six causative factors
(thematic layers) in this study. These causative factors
were ranked according to the corresponding absolute
weights for each network which means the higher the
value of absolute weight, the more crucial the factor is
for the occurrence of landslide. Considering all the 100
networks, the rank of a factor was decided based on the
rank observed by the maximum number of networks
(majority rule). Out of the 100 networks, 41 networks
categorized lithology as rank 1 (most important), 31
networks categorized lineament as rank 2, 30 networks
categorized slope as rank 3, 27 networks categorized
aspect as rank 4, 33 networks categorized land use land
cover as rank 5 and 49 networks categorized drainage as
rank 6 (least important). These results are summarized in
Table 6. Subsequently, the weighted normalized average
of the weights of these networks at a scale of 0–10 for a
particular factor was calculated and assigned as the
weight of that factor (Wl) for the preparation of LSZ
map. The weights thus obtained through ANN for all the
factors are listed in Table 7.

It has been observed that the network with archi-
tecture 6/14/8/1 has been found to be the best for this
dataset as it produced the same ranking pattern as
mentioned above. The normalized weights obtained
through this network at a scale from 0 to 10 for litho-
logy, lineament buffer, slope, aspect, land use land cover
and drainage buffer are 5.007, 1.996, 1.239, 0.933,
0.544 and 0.281 respectively (Fig. 2). These weights are
almost at par with the weights obtained through majority
rule (Table 7) which have been finally considered for
producing the LSZ map.

The integration of 6 thematic layers representing the
ratings for the categories (Rl) of the layers (obtained
from fuzzy logic) and weights for the layers (Wl)
(obtained from ANN) was performed by using simple
arithmetic overlay operation in GIS. Hence, this pro-
cedure has been named here as combined neural and
fuzzy weighting procedure. The LSI for each pixel of
the study area was thus obtained by using the following
equation.

LSI ¼
Xt

l¼1

ðWl � RlÞ ð5Þ

The LSI values were found to lie in the range from
0.030 to 0.408. The success rate curve approach was
used to classify the LSI values into five different
susceptibility zones to produce the LSZ map. Five
representative success rate curves corresponding to
m=1.2, 1.3, 1.4, 1.5 and 1.6 are shown in Fig. 7b. It can
be observed that for 10% of the area in VHS zone the
curves corresponding to m=1.2, 1.3, 1.4, 1.5 and 1.6
show the landslide occurrences of 43.9%, 45.6%,
46.7%, 43.3% and 43.9% respectively. Hence, for the
first 10% area, the curve corresponding to m=1.4 has
the highest success rate. Based on this analysis, the LSZ
map corresponding to m=1.4 appears to be the most
appropriate one for the study area. Accordingly, the
boundaries of landslide susceptibility zones were fixed
at LSI values of 0.208, 0.253, 0.299 and 0.344. The LSZ
map (referred here as Map IV) thus produced is given in
Fig. 5d. The area covered by different landslide
susceptibility zones and the area of landslides occupied
per class are also given in Table 2.

5.4.2. Analysis of output LSZ Map IV
In LSZ Map IV, only 2.3% of the total study area was

occupied by the VHS zone and 30.1% of landslide area
was predicted over this zone. It was also inferred that
22.5% of the total area occupied by VHS and HS zones
could predict 62% of landslide area (Table 2). Further,
this LSZ map has shown preferential distribution of
higher landslide susceptibility zones along structural
discontinuities (lineaments), which should indeed be the
case. The buffer zones of lineaments have clearly indi-
cated the VHS and HS zones in the north and southeast
parts of the area. Therefore, it indicates the “ghost-effect”
of lineaments on LSZmap as stated by Saha et al. (2005).
Also, theDarjeeling gneiss rock type in southeastern part,
feldspathic greywacke and Reyang quartzite in the
northern part of the study area have clearly indicated
moderate to very high susceptibility zones. Most of the
lineaments up to 125 m buffer zone in these rock types
have indicated high and very high susceptibility zones.
Hence, it depicts the importance of lithology (i.e., rock
types) as well as lineaments on the LSZ.

6. Comparative analysis and discussion

The LSZ maps were prepared using four different
weighting procedures in a GIS-based approach. The



Table 6
Ranks of factors based on majority rule in combined neural and fuzzy weighting procedure (the number represents the number of artificial neural
networks out of 100 networks categorizing a factor with respect to a particular rank and the rank corresponding to the maximum number of neural
networks for a factor represents the final rank of that factor)

Factors Number of networks Final rank
(majority rule)

Rank 1 Rank 2 Rank 3 Rank 4 Rank 5 Rank 6

Land use land cover 1 8 10 22 33 26 5
Lithology 41 21 12 10 10 6 1
Slope 23 24 30 9 9 5 3
Aspect 13 15 22 27 12 11 4
Drainage buffer 0 1 2 17 31 49 6
Lineament buffer 22 31 24 15 5 3 2

Table 7
Weights of thematic layers derived through ANN (combined neural
and fuzzy weighting procedure)

Thematic layers ANN derived weights

Lithology 4.807
Lineament buffer 2.113
Slope 1.318
Aspect 1.065
Land use land cover 0.495
Drainage buffer 0.202
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comparative analysis of different LSZ maps has been
described below.

The pattern of percent area distribution of suscepti-
bility classes in different LSZ maps prepared in this
study appears to be quite similar to that obtained in other
LSZ studies in the Himalayan regions (Gupta et al.,
1999; Arora et al., 2004; Sarkar and Kanungo, 2004;
Saha et al., 2005). However, in the LSZ Map I prepared
using conventional weighting procedure, the LS zone
occupied the maximum percent area (34.9%) in
comparison to the MS zone which occupied 30.2% area.

Further, the VHS zone in the LSZ Map IV occupied
2.3% of the total study area, whereas in all other LSZ
maps the area occupied by VHS is more than 6% of total
area. Subsequently, the landslide distribution map was
spatially cross-checked with all the four LSZ maps. The
landslide distribution in the VHS and HS zones of LSZ
maps (Table 2) indicate that the LSZ maps produced by
fuzzy and combined neural and fuzzy procedures could
predict more landslides in these zones as compared to
other two LSZ maps.

Moreover, it can also be observed that the LSZ map
produced by combined neural and fuzzy procedure shows
preferential distribution of higher landslide susceptibility
zones along structural discontinuities (lineaments) as
compared to other LSZ maps, which may indeed be the
case. Overall, the buffers of lineaments have left traces on
the LSZ map. Owing to the landslide susceptibility of the
terrain, the lineaments ought to leave some traces (termed
as “ghost effect” in Saha et al., 2005) on the LSZ map.

Furthermore, the Darjeeling gneiss rock type in
southeastern part, feldspathic greywacke and Reyang
quartzite in the northern part of the study area have
clearly indicated MS to VHS zones. Most of the line-
aments up to 125 m buffer zone in these rock types have
indicated HS and VHS zones. Hence, it depicts the
importance of lithology (i.e., rock types) as well as
lineaments on LSZ.
On the basis of these results, it can be concluded that
the LSZ map derived from combined neural and fuzzy
weighting procedure appears to be the best amongst all
the weighting procedures and may thus be a useful way
of assigning weights to the factors in an objective
manner thereby minimizing the subjectivity.

7. Conclusions

In this study, four different weighting procedures viz.
conventional based on subjective weighting, ANN black
box, fuzzy logic and combined neural and fuzzy were
applied for LSZ mapping in part of Darjeeling Hima-
layas and a comparative evaluation was carried out. The
combined neural and fuzzy weighting integration
produced the most accurate LSZ map. This may be
attributed to the following reasons:

1) It represents an objective approach where weights for
factors are determined through ANN connection
weight approach and ratings of the categories of
factors are determined through cosine amplitude
similarity method based on fuzzy relation concept.

2) The LSZ map reflects preferential distribution of
higher landslide susceptibility zones along linea-
ments which may indeed be the case.
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3) It delineates a relatively small area (only 2.3% of
total area) for VHS zone, which can be more
meaningful for practical applications.

Therefore, the integration of different factors in GIS
environment using the combined neural and fuzzy wei-
ghting procedure may serve as one of the key objective
approaches in this direction because of the fact that it
can narrow down the potential susceptibility zones in a
meaningful way for planning future developmental acti-
vities and implementation of disaster management pro-
grammes in hilly terrains.
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