
Abstract
Landslides happen to be the most common natural hazards in the mountain regions and
can result in enormous damage to both property and life every year. Hence,
identification of landslide-prone areas is essential for safer strategic planning of future
developmental activities. Therefore, Landslide Susceptibility Zonation (LSZ) becomes
important. The relative importance of factors (weights) and their categories (ratings)
plays a vital role in LSZ studies. These weights and ratings can be determined by
implementing different approaches, which at times are very subjective in nature.
Therefore, developing a suitable approach for determination of weights and ratings
objectively and their implementation in a Geographic Information System (GIS)
environment for LSZ mapping to spatially predict the actual ground scenario is highly
important and is an active research area even today. This article reviews advances in
mapping landslide susceptibility zoning and discusses the applicability of a variety of
approaches to assess landslide hazards.

KKeeyywwoorrddss::  NNaattuurraall  hhaazzaarrddss,,  LLaannddsslliiddeess,,  SSuusscceeppttiibbiilliittyy  ZZoonnaattiioonn  MMaappppiinngg,,  SSttrraatteeggiicc  PPllaannnniinngg..

Introduction
Landslides are one of the most widespread and damaging natural hazards in hilly
regions. The study of landslides has drawn global attention mainly due to increasing
awareness of its socio-economic impacts as well as increasing pressure of urbanization
on mountain environment (Aleotti and Chowdhury, 1999; Champati Ray and
Lakhera, 2004). Landslides constituted 4.89% of the natural disasters that occurred
worldwide during the years 1990 to 2005 (www.em-dat.net). According to Schuster
(1996), this trend is expected to continue in future also due to increased unplanned
urbanisation and development, continued deforestation and increased regional
precipitation as a result of changing climatic conditions in landslide prone areas.
Landslides causes loss of life and property, and damage to natural resources,
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developmental projects and essential commodities, etc. It has been estimated that, on
an average, the damage caused by landslides in the Himalayas costs more than US$
one billion, besides causing about 200 deaths every year, which amounts to 30% of
such losses occurring world-wide (Naithani, 1999). In 1998, due to massive landslides
in Ukhimath area, Garhwal Himalayas, 109 people were dead and several families were
affected. Also, Malpa landslide wiped out the whole Malpa village in Uttaranchal
during 1998 and at least 210 people were dead (Juyal, 2002). Other major landslides
namely Phata landslide of 2001, Budhakedar landslide of 2002 and Uttarkashi
landslide of 2003 are burning examples in Himalayas that have caused large-scale
human tragedies, resources damage and associated environmental-social hazards.
Hence, landslide susceptibility studies are essential for safer strategic planning of
future developmental activities in the Himalayan region.

This article provides a detailed review on approaches for landslide susceptibility
zonation (LSZ) that are in vogue around the world.

Landslide Susceptibility Zonation (LSZ) Mapping
Spatial prediction of landslide is termed as landslide susceptibility, which is a function
of landslide and landslide related internal factors. The aim is to identify places of
landslide occurrence over a region on the basis of a set of internal causative factors. This
is specifically known as landslide susceptibility zonation (LSZ), which can formally be
defined as the division of land surface into near-homogeneous zones and then ranking
these according to the degrees of actual or potential hazard due to landslides.

Basic Assumptions
All the available approaches for LSZ mapping are based upon some widely accepted
assumptions which can be stated as:
(i) The past and present are keys to the future. This implies that landslides in future

are more likely to occur under similar geological, geomorphological, hydrogeologic
and climatic conditions, which were and are responsible for the occurrence of past
and present landslides. Hence, experiences on existing landslides will be more
helpful for landslide susceptibility assessment. However, external causative factors
are aggressive and unpredictable with past events due to climatic change and
unexpected pressure on land.

(ii) Landslides with distinct geomorphological features can be identified, classified and
mapped both through field surveys and remote sensing image interpretations (Rib
and Liang, 1978; Varnes, 1978; Hutchinson, 1988; Dikau et al., 1996).

D. P. KANUNGO, M. K. ARORA, S. SARKAR, R. P. GUPTA



(iii) Landslides are controlled by identifiable internal factors (i.e., inherent attributes of
the ground) known as causative factors, which can also be mapped from field
surveys and remote sensing image interpretations (Dietrich et al., 1995).

Nevertheless, a number of obstacles may be faced while producing LSZ maps (Aleotti and
Chowdhury, 1999). For example,
(i) The discontinuous nature of landslides in space.
(ii) The difficulty in identifying the causative factors, which often are subjective.
(iii) Lack of complete historical data related to landslide occurrences.

Mapping Scale
The scale of LSZ mapping depends on three basic factors (Aleotti et al., 1996a):
(i) The purpose of the study
(ii) The extent of the study area 
(iii) Data availability

The choice of the mapping scale affects the selection of the approach (Aleotti and
Chowdhury, 1999). Thus, for example, geotechnical investigation based approach may
be suitable for studies concerning individual slopes or small areas, whereas, LSZ
approach may be suitable for a regional scale study. Further, the mapping scale for a
landslide susceptibility zonation study will control the selection of different causative
factors and also the level of detailed mapping. A scale of 1:25,000 to 1:50,000 are
generally used for delineation of landslide susceptibility zones in hilly regions. 

Mapping Unit
A mapping unit is a land surface that is homogeneous in it and show heterogeneity
with adjacent units. LSZ requires the selection of a suitable mapping unit, which
depends on a number of factors. These include type and degree of details of landslides
to be studied; the scale of study; the quality, resolution, scale and type of input data;
and the availability of analysis tools such as GIS and remote sensing.  For example, in
raster-based GIS approach for LSZ, mapping is applied whereby, the study area is
divided into regular grids of pre-defined size depending on the data availability. These
grid-cells or pixels serve as the mapping units of reference. In this approach, each pixel
in the study area is assigned a value of importance or weight corresponding to each
causative factor and the weights are integrated in GIS environment to generate a raster
output layer.
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Causative Factors For Landslide Occurrence
A landslide is seldom attributed to a single causative factor. It is of fundamental
importance to identify the causative factors for landslide occurrences in a region, which
often is difficult. It is also usually hard to establish the relationships between various
causative factors. Nevertheless, it may be possible to demarcate landslide susceptible
areas by identifying and analyzing the factors that have caused landslides in the past
(Aleotti and Chowdhury, 1999). 

There are two types of causative factors responsible for landslide occurrences; one
relates to internal or preparatory and the other to external or triggering (Crozier, 1986;
Siddle et al., 1991). Internal factors assume a state which will allow the normal
fluctuation of external factors to be sufficient to trigger a landslide. Although, internal
factors may change over a long period of time to reduce the resistance/shear stress ratio.
There is always an external factor which triggers the movement. The internal factors
represents the inherent attributes of the ground which makes the slopes susceptible to
landslides. The internal factors, even though they are the same, their geometry & their
ability to stand up are changing. Hence, the interplay of various factors lead to the
occurrence of landslides and therefore, the ultimate failure is indicative of prevailing
conditions of the ground rather than effect of some of the internal factors individually.

Various researchers have considered a number of causative factors that may be
responsible for landslide occurrences in a region. These include (Dikau et al., 1996;
Naithani, 1999):

(a) Internal or preparatory factors: i. Lithology of slope material
ii.  Structural features 
iii. Geomorphology
iv. Vegetation 
v. Hydrogeologic conditions

(b) External or triggering factors: i. Seismicity
ii. Climate
iii. Undercutting by river 
iv. Anthropogenic factors:

(a) Land use change
(b) Unplanned construction
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Lithology
Lithology basically involves the composition, texture, degree of weathering, as well as
other details that influence the physico-chemical and engineering behaviours such as
permeability, shear strength, etc. of the rocks and soils. These characteristics in turn
affect the slope stability.

Structural Features
In relation to landslides, the structural features include mainly the geological
discontinuities such as bedding, joints, faults, folds and shear zones in the slopes. The
inter-relationship between the slope and the discontinuities plays an important role
particularly in rock slopes to understand the mechanism of failure. Further, the
proximity of a slope to a tectonically active zone such as major faults or thrusts or
lineaments influences the landslide activity to a great extent.

Geomorphology
An important geomorphologic characteristic of slope instability is to identify the nature
and type of pre-existing landslides, as this governs the behavior of the terrain. The
geomorphology also includes slope morphology of the area i.e. slope angle and aspect
and their physical features involving scarps, concavity/convexity, bulging toes, etc. The
slope angle has a direct bearing on instability as the gravitational forces are accentuated
with increasing slope angle. Aspect, which represents the direction of slope face, may
have a local effect on slope stability.

Vegetation
Vegetation is an important factor in reducing the erosional activities on the slopes. A
thickly vegetated slope reduces the effect of erosion because of natural anchorage
provided by the tree roots whereas barren slopes are generally more prone to erosional
activity and therefore cause slope instability. 

Hydrogeologic Conditions
The water infiltration into the slope increases pore water pressure and decreases the
shear strength, thereby causing instability to the slopes. The excessive surface run-off
through drainages aggravates the erosional activity on the slopes. Therefore, the
hydrogeologic conditions indicating the drainage network and the nature of distribution
of surface and sub-surface water are also important for landslide occurrences.
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Seismicity
The earthquake shocks may be responsible for triggering new landslides and reactivating
old landslides. The vibrations due to earthquake may induce instability, particularly in
loose and unconsolidated material on steep slopes.

Climate
The climatic pattern due to change in geographic location may influence landslide
activities. High rainfall in tropical and sub-tropical climatic regions may trigger
landslides, as in the Himalayas.

Undercutting Action of River
The undercutting action of river removes the toe support to the slope thereby causing
slope instability.

Land use Change
The land use change, such as deforestation, exploitation of natural resources, conversion
of vegetated slopes into built up area, etc. may result into landslide occurrences.

Unplanned Construction
The overloading of slopes or removal of lateral support by human interference is a prime
concern for slope failures in many areas. The ill-planned construction activities related
to hill development programme such as road cutting, housing, quarrying, mining, etc.
aggravate the problem of slope instability in hilly regions.

The effective selection of these causative factors is important and will depend on the
study area, mapping scale, reliability as well as accuracy of the data (Aleotti and
Chowdhury, 1999). 

Landslide Susceptibility Zonation (LSZ) Approaches - A Review
The landslide susceptibility zonation is a complex task (Brabb, 1991). Several approaches
for LSZ mapping have been proposed. These approaches can be grouped into two broad
categories; qualitative and quantitative respectively. The taxonomy of different
approaches for LSZ mapping is given in Fig 1. 
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Figure 1: Flow chart showing taxonomy of LSZ approaches

Qualitative Approaches
In qualitative methods, a lot of subjectivity is introduced in preparation of various
thematic data layers contributing for landslide occurrences, which are integrated to the
generation of LSZ map of the area. 

Distribution Analysis
Distribution analysis is a straightforward approach for landslide susceptibility
zonation, which otherwise is known as landslide inventory. This approach shows the
distribution of existing landslides mapped from aerial photographs, field surveys
and/or historical data of landslide occurrences. These landslide inventory maps, in
most of the cases, provide a basis for other landslide susceptibility zonation
approaches. The landslide inventory provides a spatial distribution of existing
landslides represented on a map either as the affected areas (polygons) or as point
events (Wieczorek, 1984). In another alternative, the landslide distribution was
represented as a density map (Wright and Nilsen, 1974). Landslide isopleths were
drawn by interpolating these density values. This method did not reflect the
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relationship between the landslides and their causative factors, but it was useful in
presenting landslide densities quantitatively (Espizua and Bengochea (2002) prepared
susceptibility and risk zonation maps based on an inventory of landslides generated
through field work and interpretation of aerial photographs. The purpose was to
provide a practical basis for rational land use planning. Landslide susceptibility and
risk zones were mapped, in view of the natural hazards and the degree of loss to
elements at risk along roads and routes because of a given magnitude of landslide. 

The landslide inventory maps do not provide information on the temporal changes
in landslide distribution. Therefore, a modification in the inventory maps was done in
the form of landslide activity maps, which were based on multi-temporal aerial photo
interpretation (Canuti et al., 1979). These activity maps are useful to study the effect of
temporal changes in land use on landslide activity. 

The distribution analysis approaches are very time consuming, cumbersome and
costly, but maps based on these approaches may be useful in providing first hand
information on the landslide activities of the area. These maps do not provide
information on the degree of susceptibility of future landslide activity.

Geomorphic Analysis
Geomorphological mapping of landslide susceptibility is a direct, qualitative approach
that relies on the ability of the investigator or expert to estimate actual and potential
slope failures (Guzzetti et al., 1999). In this approach, the LSZ is carried out directly in
the field by scientists/geomorphologists based on their experience in the subject, about
the area and in other similar situations without describing any rules which have led to
this assessment. The LSZ maps are directly evolved from detailed geomorphological
maps. One of the most comprehensive projects reported in the literature was the French
ZERMOS maps (Humbert, 1977) which involved analysis of active and inactive
landslides with respect to the factors responsible for landslide susceptibility and then
extrapolation of similar physical conditions for preparation of LSZ maps. These maps
generally showed three different classes with varying degrees of susceptibility (i) null or
low susceptibility, (ii) potential or uncertain susceptibility, and (iii) ascertained
susceptibility. The ZERMOS map of the Moyenne Vesubie in region, France, prepared by
Meneroud and Calvino (1976) showed four zones of instability defined on the basis of
five factors such as lithology, structures, slope, morphology and hydrology. Another
ZERMOS map prepared by Landry (1979) identified seven classes of susceptibility on the
basis of the factors like geological nature of the soil and sub-soil, slope angle, drainage
and local history of landslides. The LSZ map was used to identify the most favorable sites
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for construction of power plants. Hearn (1995) developed an LSZ map compiled directly
in the field based on geo-morphological features at 1:10,000 scale. This approach allows
a rapid assessment of landslide susceptibility in a given area. The main disadvantages of
such approaches Leroi, 1996 are: (i) the subjective decision rules that govern the
landslide occurrences; this fact makes it difficult to compare the LSZ maps prepared by
different experts; (ii) difficult in updating the susceptibility assessment as new data
becomes available; (iii) extensive field surveys are required.

Map Combination Approach
The map combination approach for LSZ mapping involves a number of steps (Soeters
and van Westen, 1996): 
(i) Selection and mapping of the causative factors 
(ii) Thematic data layer preparation with relevant categories of the factors
(iii) Assignment of weights and ratings to factors and their categories respectively
(iv) Integration of thematic data layers  
(v) Preparation of LSZ map showing different zones 

A review of literature reveals that the pre-requisite for LSZ mapping is the preparation
of thematic data layers pertaining to different causative factors. Commonly these factors
include lithology, lineament, slope, aspect, land use land cover, and drainage etc.

Brabb et al. (1972) first introduced the landslide frequency analysis with respect to
litho units (geology) and slope categories by a simple superimposition method and
produced an LSZ map. Takei (1982) prepared a debris flow susceptibility map in Japan
considering rock types, fracturing, weathering characteristics, springs, vegetation cover,
valley slopes and historical records of large landslides as the contributory factors. In New
Zealand, Eyles (1983) identified different types of erosion and their severity based on
lithology, structure, slope and topography. In the last two decades, LSZ mapping was
conventionally carried out based on manual interpretation of a variety of thematic data
layers and their superimposition.

In recent times, due to the availability of a wide range of remote sensing data
together with data from other sources in digital form and their analysis using GIS, it has
now become possible to prepare different thematic data layers corresponding to the
causative factors responsible for the occurrence of landslides in a region (Gupta and
Joshi, 1990; McKean et al., 1991; Champati Ray, 2005a). The integration of these
thematic layers with weights assigned according to their relative importance in a GIS
environment leads to the generation of an LSZ map. However, in this approach, the
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weights were assigned on the basis of the experience of the experts on the subject and
about the study area. The weights may vary from expert to expert and also from region
to region. The subjectivity in assigning weights to each thematic data layer and to its
categories is the major limitation of this approach. Also, there is a difficulty in
extrapolating a model developed for a particular area to other areas. 

Quantitative Approaches
In order to minimize subjectivity in the weight assignment process, quantitative
approaches, objective ways of quantifying the relative importance of various causative
factors, can be deployed to produce an LSZ map. A number of approaches have been
developed, which are summarized in the following sections:

Statistical Analysis
The statistical approaches have been adopted for LSZ studies to minimise the subjectivity in
weight assignment procedure associated with qualitative approaches. The statistical
approach compares the spatial distribution of existing landslides in relation to different
causative factors (Aleotti and Chowdhury, 1999). GIS tools are quite useful in this analysis.
Statistical approaches can broadly be classified into two types: bi-variate and multivariate. 

(a) Bi-variate Statistical Analysis
In bi-variate statistical analysis, each individual thematic data layer is compared to the
existing landslide distribution layer. The weight value of each category of causative
factors is assigned based on landslide density. This involves the overlay of landslide
distribution layer on each of the thematic data layers, and calculation of respective
landslide density values. 

The frequency analysis approach (Pachauri and Pant, 1992, Sarkar et al., 1995; Mehrotra
et al., 1996; etc.) involves determination of normalized frequency distribution of landslides
per unit area in each category of individual factors. This is achieved by overlaying the
landslide layer on each thematic data layer manually or in GIS environment. These
frequency values are used as the ratings of the respective categories of causative factors.
Constant or arbitrary weights are assigned to the causative factors.  These ratings and
weights for the factors and their categories are integrated to produce the LSZ map. 

The Information Value (InfoVal) approach (Yin and Yan, 1988; Jade and Sarkar, 1993;
van Westen, 1997; Lin and Tung, 2003; Saha et al., 2005) for LSZ mapping considers the
probability of landslide occurrence within each category of thematic data layer. The
rating of a particular category of a thematic data layer is determined as:
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(1)

where, Wi denotes the weight given to the ith category of a particular thematic data layer;
Densclas denotes the landslide density within the category; Densmap denotes the
landslide density within the thematic data layer; Npix(Si) denotes the number of pixels,
which contain landslides, in a category; Npix(Ni) denotes the total number of pixels in
a category and n is the number of categories in a thematic data layer. The thematic data
layers are overlaid and the ratings (InfoVal) are added to prepare a Landslide
Susceptibility Index (LSI) map, which is later categorized into five different landslide
susceptibility zones to prepare an LSZ map.

Another approach, known as the Landslide Nominal Risk Factor (LNRF) approach,
was developed by Gupta and Joshi (1990), which determines the rating of each category
of thematic data layers. The LNRF is determined using the following equation:

(2)

where, Npix(Si) denotes the number of pixels containing landslides in ith category and n
is the number of categories present in the particular thematic data layer. A higher value
of LNRF (i.e., LNRF >1) implies more susceptibility to landslides than the average; an
LNRF value <1 indicates less susceptibility to landslides; whereas, an LNRF value =1
indicates a category with an average landslide susceptibility. The LNRF values were
regrouped broadly into three classes for each thematic data layer, and were assigned
ratings 0, 1 and 2 for LNRF<0.67 (low susceptibility), 0.67<LNRF<1.33 (medium
susceptibility) and LNRF>1.33 (high susceptibility) respectively. The thematic data layers
were overlaid and the values were added to prepare an LSI map. The LSI values were
classified into three susceptibility zones: low, medium and high. However, it has been
observed that regrouping of LNRF values into ordinal numbers (0, 1, 2) leads to
coarsening of approach and reduction in the relative importance of various categories.
Therefore, Saha et al. (2005) proposed a modified LNRF approach known as modified
Landslide Nominal Hazard Factor (m-LNHF), where the computed ratings were directly
used without any regrouping.

The bi-variate statistical approaches are based on the observed relationships between
each category of factors and the existing landslide distributions in the area. Although,
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the bi-variate statistical approaches are considered to be a quantitative approach for LSZ
mapping, a certain degree of subjectivity exists, particularly in the weight assignment
procedures for different causative factors. In all cases, constant weights or arbitrary
weights have been assigned to the causative factors for LSZ mapping.

(b) Multivariate Statistical Analysis
Multivariate approaches consider relative contribution of each thematic data layer to the
total susceptibility within a defined area. The procedure involves several important steps
(Aleotti and Chowdhury, 1999):
(i) Identification of percentage of landslide affected areas in each pixel and their

classification into stable and unstable zones,
(ii) Preparation of an absence/presence matrix of a given category of a given thematic

layer, 
(iii) Multivariate statistical analysis (discriminant and regression), and
(iv) Reclassification of the area based on the results and their classification into

susceptibility classes. 

These approaches involve analysis of large volume of data and are time consuming.
External statistical packages are generally used to support the GIS packages. The
statistical analyses most frequently used for LSZ mapping are discriminant analysis and
multiple regression analysis (Yin and Yan, 1988; Jade and Sarkar, 1993; Wieczorek et al.,
1996; Atkinson and Massari, 1998; Chung and Fabbri, 1999; Clerici et al., 2002). 

Carrara (1983) applied multivariate approaches (discriminant analysis and multiple
regression analysis) for LSZ mapping in Southern Italy. These approaches proved to be
useful in predicting actual and potential landslide susceptibility. In this study, a group of
geological-geomorphological attributes, which are directly or indirectly correlated with
slope instability, were used in the discriminant functions and in the regression equation.
The slope units were discriminated successfully into stable and unstable areas. It was
reported that in multiple regression analysis, lithology and its interaction with slope
angle contributed significantly in predicting the percentage of unstable areas. However,
the result of these statistical approaches underlined the need of other factors capable of
improving the efficiency of the approach.

Yin and Yan (1988) analysed 21 categories of different factors based on data collected
from field investigation and landslide mapping. Regression analysis approach was used
to establish different degrees of instability for the preparation of LSZ map of the area.
Clerici et al. (2002) applied the conditional analysis approach for LSZ mapping which
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simultaneously took into account all the factors contributing to instability. The landslide
density of each pixel was computed in correspondence to different combinations of
causative factors and an LSZ map was prepared based on the landslide density values. It
has been observed that this approach is difficult to implement and requires complex
operations. Further, to achieve satisfactory results, the procedure has to be repeated few
times changing the combination of factors and their categories.

The limitations of multivariate statistical approach can be listed as follows:
(i) Discriminant and regression analyses require data derived from a normally

distributed population that is frequently violated.
(ii) A mixture of continuous (i.e., slope, aspect, etc.) and categorical (i.e., lithology, land

use land cover, etc.) factors leads to incorrect solution.
(iii) Some of the factors may bear weak physical relationship with landslide occurrences.

Combination of such factors with other factors may generate data which is very
difficult to interpret.

Probabilistic Approach
The probabilistic approaches have also been used for LSZ studies to minimise the
subjectivity in weight assignment procedure. This approach compares the spatial
distribution of landslides in relation to different causative factors within a probabilistic
framework. Some of methods based on this approach include conditional probability
model, weight of evidence method under Bayesian probability model, certainty factor
method under favorability mapping model, etc. 

Favourability modeling (FM) approach is a good compromise, offering a valid
quantitative method, where subjectivity or expert knowledge can be incorporated in the
analysis, particularly when data are not sufficient or reliable. With FM, thematic data
can be transformed into continuous data, by considering the degree of relationship
between the landslides and the categories of each thematic data layer. Each continuous
or non-continuous category can be transformed into a value, called favourability value.
The Certainty Factor (CF) approach is one of the possible proposed Favorability
Functions (FF) to handle the problem. The CF, defined as a function of probability,
originally proposed by Shortliffe and Buchanan (1975) and later modified by Heckerman
(1986) can be given as:

(3)
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where ppa is the conditional probability of having a number of landslide event occurring
in category a and pps is the prior probability of having the total number of landslide
events occurring in the study area. The range of CF values varies from -1 to 1. A positive
value means an increasing certainty in landslide occurrence, while a negative value
corresponds to a decreasing certainty in landslide occurrence. A value close to zero
means that the prior probability is very similar to the conditional one. By integrating the
CF values of the categories of thematic data layers, an LSZ map can be prepared. 

Chung and Fabri (1999) proposed a conditional probability model for LSZ mapping.
Five different procedures namely direct estimation, Bayesian estimation under
conditional independence, regression model, modified Bayesian model and modified
regression model were adopted for estimating conditional probability of landslide
susceptibility. GIS-based existing landslide distribution layer and various thematic data
layers were used to prepare the LSZ map. The LSZ maps were validated by comparing
with the later landslides. It was observed that multivariate regression analysis generated
better results than other probability methods. 

Lee et al., 2002 applied Bayesian probability model using the weight-of-evidence
method of Bonham-Carter (1994) for LSZ mapping. Using the location of landslides
and topographic factors, the method was used to calculate the weights (positive and
negative) and contrast (difference of positive and negative weights) for each
category of different causative factors. The contrast was used as the rating of each
category. The contrast is positive for a higher influence on landslide occurrences and
negative for a lower influence on landslide occurrences. The ratings of the thematic
data layers were summed to calculate the landslide susceptibility index (LSI). The LSI
values were categorized into different susceptibility zones to prepare an LSZ map.
van Westen et al. (2003) also used the weights of evidence approach to generate
statistically derived ratings for all categories of thematic data layers. On the basis of
these ratings, a judicious choice of relevant thematic data layers was made for
preparation of an LSZ map. 

The application of probabilistic prediction model based on likelihood ratio
function for LSZ mapping was discussed by Chung and Fabri (1998) and Lee and Min
(2001). The existing landslide locations and different thematic data layers were used
to implement the model. The probability frequency distribution functions of the
landslide affected and non-affected areas should be distinctly different. The likelihood
ratio function, which is the ratio of the two frequency distribution functions, can
highlight this difference. For each category of thematic data layers, two empirical
distribution functions for the landslide affected and non-affected areas were computed
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and the likelihood ratio for all the categories were determined. The LSZ map was
prepared using the likelihood ratio values as the ratings of the categories. 

The probabilistic approaches are based on the observed relationships between each
category of factors and the existing landslide distributions in the area within a
probabilistic framework. The thematic data (continuous and categorical) can be
transformed into continuous data by considering the degree of relationship between
the landslides and the categories of each thematic data layer. Although, the
probabilistic approaches are considered to be a quantitative approach for LSZ
mapping, a certain degree of subjectivity in the weight assignment procedures for
different causative factors exists. 

Distribution-Free Approaches
Generally, qualitative approaches are highly based on experts experience and
knowledge and can be considered as subjective (conventional). On the other hand, the
quantitative approaches, such as statistical (bi-variate and multivariate) and
probabilistic approaches can be considered as more objective due to their data-
dependent character. However, success of these approaches is highly affected by the
number, quality and reliability of data (Ercanoglu and Gokceoglu, 2004). Therefore, to
overcome these limitations, some new approaches such as fuzzy logic, artificial neural
networks (ANNs), etc, may be adopted for LSZ mapping on a regional scale. Recently,
fuzzy set theory, neural networks and combined neural and fuzzy approaches have
been used to generate LSZ maps. 

Fuzzy set theory can provide us with a natural method of quantitatively processing
multiple datasets. Fuzzy relations play an important role in fuzzy modeling and in the
context of LSZ mapping; fuzzy relations can be established based on the philosophy that
landslides are related to some extent or unrelated to the causative factors.  On the other
hand, the most attractive aspect of ANN approaches is the ability to express the
nonlinearities in the process to solve the problem similar to the human brain reasoning.
Due to uncertainties in the causative factors used in LSZ mapping and the nonlinear
character of landslides, utilization of these approaches can be considered as useful
alternatives. The fuzzy and ANN approaches are also free from any distributional
assumptions or bias of the data and the weights are computed in an objective manner. Chi
et al. (2002) discussed the effectiveness of fuzzy set theory for landslide susceptibility
mapping. The relationships between input causative factors and past landslides in terms of
likelihood ratio functions of each thematic data layer were computed and used as fuzzy
membership values. These membership values were able to highlight the difference
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between areas affected by past landslides and areas not affected by past landslides. Fuzzy
inference networks using a variety of different fuzzy operators, especially combination of
fuzzy OR and fuzzy gamma operator were used for data integration to prepare the LSZ map.
It was observed that fuzzy gamma operator with high gamma value could effectively
integrate most datasets for LSZ mapping. Tangestani (2003) also performed LSZ mapping
using Land Hazard Evaluation Factor (LHEF) rating scheme of Anbalagan (1992) for
determination of fuzzy membership values and fuzzy gamma operator for thematic data
layer integration. The LSZ map was validated based on past landslides. It was suggested to
evaluate the efficacy of fuzzy gamma operator for data integration in LSZ mapping. 

GGoorrsseevvsskkii  eett  aall..  ((22000033)) demonstrated that LSZ mapping can be achieved through an
integration of GIS, fuzzy k-means and Bayesian modeling approaches. In the modeling
approach, the optimal number of categories was derived by iterative classification for a
range of categories or from expert knowledge. The continuous fuzzy k-means
classification provided significant amount of information about the character and
variability of data and proved to be a useful indicator for landslide susceptibility
mapping. The probabilities were revised with Bayes theorem after the categories with
similar characteristics were grouped together by fuzzy k-means approach. A broad range
of causative factors were integrated through continuous fuzzy k-means classification to
prepare an LSZ map. It was observed that the LSZ mapping using the integrated
fuzzy/Bayesian approach produced better spatial prediction of existing landslide
locations than qualitative models. It was suggested to analyze each individual model in
greater detail to improve the understanding between the processes.

EErrccaannoogglluu  aanndd  GGookkcceeoogglluu  ((22000044)) developed a model based on fuzzy relation concept
for preparation of LSZ map. The landslide distribution layer was analyzed in relation to
the categories of various thematic data layers to compute the fuzzy membership values
for each category. By integrating the fuzzy membership values, the LSZ map was
prepared. The LSZ map was validated with the existing landslides in the area. The fuzzy
relation concept is an objective approach for determination of fuzzy ratings of different
categories based on actual landslide data. Hence, this approach introduces relativity
concept in rating determination. However, other quantitative approaches such as
statistical and probabilistic ones consider the actual landslide data for determination of
rating in a crisp manner without employing the relativity.

AArroorraa  eett  aall..  ((22000044)) proposed an ANN black box approach for LSZ mapping. This
approach determines the weights objectively in an iterative process, but the weights in this
case remain hidden. The neural network training and testing datasets were prepared using
the attributes of various thematic data layers representing the input neurons and the
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existing LSZ map (Saha et al., 2002) representing the single output neuron. After successful
training and testing of different neural network architectures, the best architecture for this
specific problem was selected based on the highest training and testing accuracies. The
adjusted connection weights of the best network were used to generate the LSZ map of the
area. The distribution of landslide susceptibility zones derived from ANN showed similar
trends as that observed with the existing landslide locations in the field. A comparison of
the results was made with an earlier produced GIS-based LSZ map of the same area and
indicated that ANN results were better than the earlier method. 

GGoommeezz  aanndd  KKaavvzzoogglluu  ((22000055))  also used artificial neural networks black box approach
for LSZ mapping. In this process, a multilayer perceptron with back propagation learning
algorithm was used. This approach used a wide range of causative factors and the
existing landslide distribution layer derived from digital elevation model, remote
sensing imagery and documentary data for neural network training and testing data
preparation. Neural network architecture of 9/28/1 (9 input neurons, 28 hidden neurons
and one output neuron) was used for training and testing. After the training and testing
process, an LSZ map was generated for the whole area. The existing landslides were
considered to validate the LSZ map. It was observed that the predictions were close to
reality, indicating a satisfactory performance of the model. 

YYeessiillnnaaccaarr  aanndd  TTooppaall  ((22000055)) prepared landslide susceptibility maps using both
logistic regression analysis and ANN approaches. For this purpose, 19 different thematic
data layers were used. In ANN approach, a feed forward back propagation algorithm was
adopted. They used single hidden layer neural network architecture. The connection
weights of neural networks have been used to determine the weights for the chosen
input thematic layers. The landslide susceptibility map produced using the ANN
approach predicted higher percentage of landslides, especially in high and very high
zones than the logistic regression analysis method. 

EElliiaass  aanndd  BBaannddiiss  ((22000000)) proposed a neuro-fuzzy approach for LSZ mapping. Fuzzy
linguistic rules were used to assign fuzzy membership values to different categories of
thematic data layers. The fuzzy membership values were used to provide data to the
input neurons for neural network model. A single output neuron with values from 0 to
1 was considered to represent the degree of landslide susceptibility based on actual
landslide data. The back error propagation neural network was used for training and an
LSZ map was prepared for the area. The trained network was also used for another area
to generate the LSZ map. The existing landslides in both the areas were considered to
validate the LSZ maps. It was observed that the predictions were close to reality
indicating a satisfactory performance of the model. 

Vol. 2 No. 1 June 2009 97

LANDSLIDE SUSCEPTIBILITY ZONATION (LSZ) MAPPING - A REVIEW



98 Journal of South Asia Disaster Studies

LLeeee  eett  aall..  ((22000044)) attempted the development, application and assessment of
probabilistic and artificial neural network approaches for LSZ mapping. Landslide
locations and causative factors were used for analyzing landslide susceptibility. A
probabilistic method was used for determination of rating of each category and an
artificial neural network approach was used for determination of weights of causative
factors. The rating of each category was determined using the likelihood ratio function
(Lee and Min, 2001). The weight of each factor was determined after artificial neural
network training (Hines, 1997). The existing landslide locations and no-landslide areas
were used to randomly generate ten sets of training data. The back error propagation
neural network was used to train the networks for all the training datasets used. Neural
network architecture of 7/15/2 (7 input neurons, 15 hidden neurons and 2 output
neurons) was considered for the study. The initial connection weights between the
neurons were assigned random values. After successful training of the network, the
weights of the factors were determined based on the weight matrices analysis for all
the 10 training datasets. The normalized average value of ten different weights for a
particular factor was considered as the weight of the corresponding factor. The LSZ
maps were prepared by integrating the ratings of the categories only and also by
integrating the ratings and the weights together. The two LSZ maps were verified using
the existing landslide locations. The verification results were reasonable and
acceptable. 

KKaannuunnggoo  eett  aall..  ((22000066)) developed the combined neural and fuzzy approach (Fig 2)
which involved three main steps: (i) weight determination of thematic data layers
through ANN connection-weight procedure; (ii) rating determination of categories of
thematic layers using cosine amplitude similarity method and (iii) LSZ map preparation
by integration of ratings and weights in GIS.
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Figure 2 Combined neural and fuzzy approach for LSZ mapping in Darjeeling Himalayas

(Kanungo et al., 2006)

A feed forward back-propagation multi-layer ANN with one input layer, two hidden layers
and one output layer was considered. Three independent data sets were formed for
training, verification and testing. The training dataset was used to train different network
architectures, while the verification dataset was used to control the over-training of the
networks. The testing dataset was used to evaluate the accuracy of the trained networks.
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Levenberg-Marquardt back-propagation algorithm was used. A total of 100 neural network
architectures were designed, trained and tested. The adjusted weights of input-hidden,
hidden-hidden and hidden-output connections for each network were captured and
simple matrix multiplication was performed on these weight matrices to obtain a 6×1
weight matrix for each network, which represented the weights of six causative factors.
These causative factors were ranked according to the corresponding absolute weights for
each network. The rank of a factor was decided based on the rank observed by the
maximum number of networks (majority rule). Subsequently, the normalized average of
the weights of these networks at a scale of 0-10 was calculated for a particular factor and
assigned as the weight of that factor. The ratings to each category of a thematic data layer
corresponding to a causative factor were determined using cosine amplitude similarity
method (Ross, 1995; Ercanoglu and Gokceoglu, 2004). The integration of 6 thematic layers
representing the ratings for the categories of the layers (obtained from fuzzy set based
approach) and weights for the layers (obtained from ANN) was performed using arithmetic
overlay operation in GIS and the LSZ map (Fig 3) was produced.

Figure 3 LSZ map using combined neural and fuzzy approach (Kanungo et al., 2006)
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It can be observed from the above review that the distribution-free approaches (fuzzy
and ANN) are able to determine the weights and ratings of the causative factors and their
categories in an objective manner. These approaches also have the ability to handle
continuous, categorical and binary data pertaining to various causative factors for LSZ
mapping. However, the fuzzy set based approach addresses the determination of ratings
of the categories only. Unlike defining crisp ratings to each category, as is done in
conventional weighting approach, the fuzzy set theory determines ratings on a 0 to 1
continuous scale thereby providing more realistic values. In most of the ANN
approaches for LSZ mapping, single neural network architecture has been attempted.
However, an optimal architecture exists for each specific problem of LSZ mapping, as
pointed out by Arora et al. (2004). The nature and size of reference data for the output
neuron in a neural network influence the training and testing data accuracies (Kanungo
et al. 2006). It can also be observed that the weights for the causative factors remain
hidden in case of ANN black box approach. This happens to be a key limitation of the
ANN black box approach, where the weights and ratings can not be quantified and
therefore the contribution of a particular factor is not known. Alternative approach is an
ANN connection weight analysis to determine the weights of the factors only. Therefore,
a combination of the ANN derived weights and the ratings determined through fuzzy set
based approach can identify a real physical situation on the ground.

Summary
The review on LSZ mapping suggests that broadly there are two groups of approaches:
qualitative and quantitative approaches for LSZ mapping. The qualitative approaches,
such as distribution analysis, geomorphic analysis, map combination methods, etc.,
were very popular at late 1970s among engineering geologists and geomorphologists.
The quantitative approaches became popular in the last decades depending on the
advancements in the developments of remote sensing and GIS technologies. Advantages
or disadvantages of different LSZ mapping approaches have been commonly discussed
by the experts in the field of landslide studies in the literature. The qualitative
approaches rely on expert knowledge or experience which dictates the selection, the
weighting and the combination function of the factors and therefore, can be considered
as conventional or subjective. The quantitative models involve the use of mathematics
and statistics to express the relationships between the existing landslide distribution and
the categories of factors. Therefore, these can be considered as more objective than
conventional approaches due to the fact that data-dependent character and much less
experience is needed. However, success of these approaches is highly affected by the
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quantity, quality and reliability of data. Statistical and probabilistic approaches require
the collection of huge amount of data to produce good results. Also, these approaches
contribute in determining the ratings of the categories of factors only, but consider
constant or arbitrary weights for all the factors to generate the LSZ maps. Therefore,
some distribution-free approaches such as fuzzy set based and ANN based approaches
have been attempted to evaluate the landslide susceptibility in recent years. The fuzzy
set based approach addresses the determination of ratings of the categories only. In most
of the ANN black box approaches for LSZ mapping, single neural network architecture
has been attempted. However, an optimal architecture exists for each specific problem
of LSZ mapping. It can also be observed that the weights for the causative factors remain
hidden in case of ANN black box approach. The connection weight analysis seems to be
an alternative approach for determination of weights of the causative factors. Moreover,
a combination of ratings determined through fuzzy set based approach and weights
obtained through ANN connection weight analysis seems to be better for LSZ mapping.
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