N-09

ISSN 0971-1627

Vol. 8

April-June 1999

No. 4

Indian Journal of Heterocyclic Chemistry

Now on internet: www.indialinks.com/ijhc

Published in Association with NATIONAL ACADEMY OF CHEMISTRY AND BIOLOGY (INDIA). LUCKNOW

SYNTHESIS AND TERMITICIDAL ACTIVITY OF N'-ISONICOTINOYL-5,5-DIMETHYL CYCLOHEXANE-4-(SULPHA/SUBSTITUTED PHENYL AZO)-1,2-DIAZOLES

Y. Singh*, S.S. Nayal and B.S. Rawat
Building Pests and Mycology Laboratory, Central Building Research Institute,
Roorkee-247 667

Received 16 Feb. 1999; Accepted 26 May 1999

A novel series of heterocyclic compounds namely N¹-isonicotinoyl 5,5′-dimethyl cyclohexane-4-(sulpha/substituted phenylazo)-1,2-diazoles have been synthesized. The structures of the synthesized compounds were supported by elemental analysis, IR and NMR spectra data. They were screened for termiticidal activity against termites (Microcerotermes beesoni) at different concentrations. It was compared with Endosulfan and explained through regression equation, $Y_{\rm ps}=mX+C$.

Diazole derivatives possess various types of biological activities viz., antimicrobial, antiprotozoal, antifungal, pesticidal, orthopodicidal, nematocidal, etc¹-4. In view of the biological importance of such compounds we have synthesized bicyclic sulpha/ substituted phenyl azo-1,2-diazoles of isonicotinic acid hydrazide, by linking of two heterocycles.

The present communication describes the synthesis of N¹-isonicotinoyl-5,5′-dimethyl-cyclohexane-4-(sulpha/substituted phenylazo)-1,2-diazoles by condensation of sulpha/substituted phenylazo-5,5′-dimethylcyclohexane 1,3-dione with isonicotinic acid hydrazide using gl acetic acid as the condensing agent (Scheme-1). They were tested for termiticidal activity:

Biological assay

All the synthesized compounds were screened for their termiticidal activity against *Microcerotermes beesoni* at different concentrations, It was compared with standard pesticide Endosulfan at various concentrations. The mortality of *Microcerotermos beesoni* was determined graphically using regression equation¹¹ (Table-2). The study revealed that the compounds III, VII, IX, XII, XVII, XXIII and XXVIII showed effective mortality against termites. The standard compound Endosulfan showed 100% mortality against termites in 10 hr., 7½ hr and 6 hr at 0.25%, 0.50% and 1.0% concentrations. The newly synthesized bicyclic heterocyclic-1,2-diazoles namely N¹-isonicotinoyl-5,5′-dimethyl cyclohexane-4-(3-chlorophenylazo), (2-chloro-4-nitrophenylazo),

(3-nitrophenylazo), (2-methylphenylazo), (1-naphthylazo), (N'-2-pryridyl sulphanilamidobenzeneazo), (N'-2-acetyl sulphanilamidobenzeneazo)-1,2-diazoles showed 100% mortality in 9 to 10 hr, 6 to 71/2 hr, and 5 to 6 hr, at 1%, 2% and 2.5% concentrations respectively.

These compounds have therefore good potential for use as pesticides for soil treatment to control termites.

Experimental

The melting points of the synthesized compounds were determined in open capillaries in a GANSON electrical melting apparatus and are uncorrected. The homogeneity and purity of the compounds were checked over thin layer chromatoplates coated with silica Gel-G (thickness 0.5 mm), developing solvent acetone/DMF (3:1), nonsaturated chamber at room temp. (20 \pm 1°). Infrared spectra (in cm-¹) were determined in KBr on a Perkin Elmer 577 Spectrophotometer and ¹H NMR spectra were recorded on Bruker WM-400 spectrometer at 200 MHz in CDCl $_3$ + DMSO-d $_6$ using TMS as in internal reference (chemical shift in δ ppm).

N¹-lsonicotinoyl-5,5'-dimethyl cyclohexane-4-(sulpha/substituted phenylazo)-1,2-diazoles

A mixture of sulpha/substituted phenylazo 5,5'-dimethyl cyclohexane-1,3-dione (0.05 mol) and isonicotinic acid hydrazide (0.05 mol) was refluxed in gl acetic acid for 4 hr. and contents were left over night. The coloured solid mass was filtered, washed with water and dried. It was recrystallized form gl acetic acid to furnish shining crystals of N¹-isonicotinoyl-5,5'-dimethyl cyclohexane-4-(sulpha/substituted phenylazo)-1,2-

H₃C

CH,

$$N = N - X$$

$$Z = N = N - X$$

$$X = (i) C_6H_5; (ii), 2 - Cl - C_6H_4; (iii) 3 - Cl - C_6H_4; (iv) 4 - Cl - C_6H_4; (v) 2 - 4 - 6 - (Br)_3 - 3 - C_6H_2; (vi) 3 - F - C_6H_4; (vii) 2 - Cl - 4 - NO_2 - C_6H_3; (viii) 2 - NO_2 - C_6H_3; (xii) 3 - NO_2 - 4 - CH_3 - C_6H_3; (xii) 2 - CH_3 - C_6H_4; (xii) 4 - CH_3 - C_6H_4; (xiv) 2 - OCH_3 - C_6H_4; (xv) 4 - OCH_3 - C_6H_4; (xvii) - NH_2 (xviii) - SO_2NH - SO_2NH$$

diazoles. By analogous procedufe, several substituted-1,2-diazoles have been synthesized. Their characteristics are recorded in Table-1.

The structures of the synthesized compounds were supported by IR spectra. In their IR spectra the parent compound showed a peak at 780 cm⁻¹ (aromatic ring) and a sharp peak at 1360 as the [-C-(CH₃)₂] group is present. A number of peaks were obtained at 1550, 1570, 1600, 1610 which indicate the presence of N=N heterocyclic pyridine ring, C=C and C=N respectively.

A characteristic peak at 1710 due to bicyclic ring and a peak at 1740 as C=O of tert, amide having N in diazole ring, helped in establishing the structure. The above structures were confirmed by NMR spectra as follows:

N¹-isonicotinoyl-5,5′-dimethyl cyclohexane-4-(2-chlorophenylazo)-1,2-diazole (ii)

1.10 (s, 6H, C(CH $_3$) $_2$); 2.12 (s, 4H, 2xCH $_2$); 7.20-7.76 (d, ArH, C $_8$ H $_4$ Cl, J=8Hz); 7.12 (dd, 2,4-pyridine

Table-1

Characterization data of N¹-isonicotinoyl-5,5'-dimethyl cyclohexane-4-(X) azo-1,2-diazoles

Compd	Yield	M.P. (°C)	Mol	dimethyl cyclohexane-4-(X) azo-1,2-diazo		
	(%)		formula	Found	(Galed)	R,
l II .	78 71	115 130	C ₂₀ H ₁₈ N ₃ O C ₂₀ H ₁₈ CIN ₃ O	13.20 11.90	(13.24) (11.94)	0.8172 ′
iii	73	126	C ₂₀ H ₁₈ CIN ₃ O	11,91	(11.94)	0.9156
iv ·	70	205	C ₂₀ H ₁₈ CIN ₃ O	11.92	(11.94)	0.5432
٧	72	180	C ₂₀ H ₁₆ Br ₃ N ₃ O	07.53	(07.58)	0.7615
vi	72	179	C ₂₀ H ₁₈ N ₃ OF	12.51	(12.53)	0.6943
vii	68	157	C ₂₀ H ₁₇ CIN ₄ O ₅	13.00	(13.06)	0.7925
viii	73	167	C ₂₀ H ₁₈ N ₄ O ₃	15.10	(15.46)	0.8321
X	69	181	C ₂₀ H ₁₈ N ₄ O ₃	15.32	(15.46)	0.7925
Κ .	76	, 143	C ₂₀ H ₁₈ N ₄ O ₃	15.40	(15.46)	0.8235
ci .	75	215	C ₂₁ H ₂₀ N ₄ O ₃	14.76	(14.89)	0.9321
ii	71	207	C ₂₁ H ₂₁ N ₃ O	12.62	(12.68)	0.5641
iii	68	198	C ₂₁ H ₂₁ N ₃ O	12.63	(12.68)	0.5932
iv	67	167	C ₂₁ H ₂₁ N ₃ O ₂	12.00	(12.10)	0.7321
V	77	181	C ₂₁ H ₂₁ N ₃ O ₂	12.00	(12.10)	0.8231
vi	78	183	C ₂₆ H ₂₄ N ₄ O	13.70	(13.72)	0.8651
/ii	65	175	C ₂₄ H ₂₁ N ₃ O	11.34	, ,	0.9631
viii	72	198	C ₂₄ H ₂₁ N ₃ O	11.35	(11.44)	0.7251
x · · ·	71	200	' C ₂₁ H ₁₉ N ₃ O ₃	11.51	(11.63)	0.6932
()	68,	169	C ₂₀ H ₁₉ N ₃ O ₂	12.50		0.7251
d 🐷	76	159	C ₂₅ H ₂₅ N ₅ O ₂	16.32	(12.61) (16.39)	0.8235
di errora (68	172	C ₂₀ H ₂₀ N ₄ O ₃ S	14.10	(14.14)	0.9211
iii	75	177	C ₂₅ H ₂₃ N ₅ O ₃ S	14.72	(14.14)	0.8235
iv (67	189	C ₂₄ H ₂₂ N ₆ O ₃ S	17.71	(17.72)	0.7321
v .	72	180	C ₂₃ H ₂₁ N ₅ O ₃ S ₂	14.51	(14.61)	0.7641
vi 7	75	. 179	C ₂₁ H ₂₂ N ₈ O ₃ S	19.10	, ,	0.8251
vii 7	0	175	C ₂₆ H ₂₆ N ₆ O ₃ S	16.56	(19.17)	0.6931
viii 7	'2	164	C ₂₂ H ₂₂ N ₄ O ₄ S	12.72	(16.73)	0.7321
	0	201	C ₂₂ H ₂₄ N ₆ O ₃ S	16.00	(12.78) (16.03)	0.8235

Table-2
Determination of Regression equation for termiticidal activity against Microcorotormos boosoni

Comp Concentration (%) iii 1.5					
vii 2.5	Comp C		Regression Equation*		
vii 1.5	iii		Y _{1.5,III} =0.0342X +1.4476		
ix 1.5 Y _{2.5,III} =0.0805X+2.7809 Y _{2.5,III} =0.0655X+2.7809 Y _{2.5,III} =0.0515X -1.8177 Y _{2.0,IX} =0.0594X+4.0263 Y _{2.5,IX} =0.0680X+5.05 Y _{1.5,IXII} =0.0680X+5.05 Y _{1.5,IXII} =0.0668X+3.4052 Y _{2.5,IXII} =0.0675X+4.2052 Y _{2.5,IXII} =0.0575X+4.2052 Y _{2.5,IXII} =0.0575X+4.2052 Y _{2.5,IXII} =0.0782X+5.1208 Y _{2.5,IXII} =0.0782X+5.1208 Y _{2.5,IXII} =0.0782X+5.1208 Y _{2.5,IXII} =0.0795X-0.8857 Y _{2.5,IXII} =0.0795X-0.8857 Y _{2.5,IXII} =0.0795X-0.8857 Y _{2.5,IXII} =0.0795X-0.8857 Y _{2.5,IXII} =0.0598X-1.4150 Y _{2.5,IXII} =0.0885X-3.9047 Y _{2.5,IXII} =0.885X-3.9047	vii	1.5	Y _{2.5,III} =0.0816X+2.7428 Y _{1.5,VII} =0.0367X +1.2462		
2.0	ix	2.5	Y _{2.5,VII} =0.0805X+2.7809		
XVIII	vii	2.5	Y _{2.0, IX} =0.0594X+4.0263 Y _{2.5, IX} =0.0680X+5.05		
$ \begin{array}{c} \text{xvii} & 1.5 & Y_{1.5\text{xvii}} = 0.0440\text{X} - 1.0552\\ 2.0 & Y_{2.0\text{xvii}} = 0.515\text{X} + 3.0790\\ 2.5 & Y_{2.0\text{xvii}} = 0.575\text{X} + 4.2052\\ \text{xxiii} & 1.5 & Y_{1.5\text{xxviii}} = 0.0367\text{X} + 1.7651\\ 2.0 & Y_{2.0\text{xxiii}} = 0.0812\text{X} + 2.2\\ 2.5 & Y_{2.5\text{xxiii}} = 0.0782\text{X} + 5.1208\\ \text{xxviii} & 1.5 & Y_{1.5\text{xxviii}} = 0.0732\text{X} + 5.1208\\ 2.0 & Y_{2.0\text{xxviii}} = 0.0731\text{X} - 1.3922\\ 2.5 & Y_{2.5\text{xxviii}} = 0.0731\text{X} - 1.3922\\ 2.5 & Y_{2.5\text{xxviii}} = 0.0795\text{X} - 0.8857\\ \text{Endosulfan} & 1.5 & Y_{1.5\text{Endo}} = 0.0464\text{X} - 3.2528\\ 2.0 & Y_{2.0\text{Endo}} = 0.0598\text{X} - 1.4150\\ 2.5 & Y_{2.5\text{Endo}} = 0.885\text{X} - 3.9047 \\ \end{array} $ $ \begin{array}{c} \text{Yp,c} = \text{mX} + \text{C}\\ \text{Where:p=Concentatin in percentage} \end{array} $	All 177	2.0	Y _{2.0,XII} =0.0558X+1.0790		
$ \begin{array}{c} 2.5 \\ \text{xxiii} \\ 1.5 \\ 2.0 \\ 2.5 \\ \text{xxviii} \\ 2.5 \\ \text{xxviii} \\ 1.5 \\ 2.0 \\ 2.5 \\ \text{xxviii} \\ 2.5 \\ \text{xxviii} \\ 2.5 \\ \text{xxviii} \\ 2.0 \\ 2.5 \\ 2.0 \\ 2.0, \text{Endo} \\ 2.0, E$	xvii	1.5	Y _{1.5,XVII} =0.0440X -1.0552		
2.0,xxiii	xxiii	1.5	Y _{2,5,XVII} =0.0575X+4.2052		
1.5 XXVIII = 0.0731X + 1.3922 2.5 Y _{2.0,XXVIII} = 0.0795X-0.8857 2.5 Y _{2.5,XXVIII} = 0.0795X-0.8857 Y _{1.5,Endo} = 0.0464X - 3.2528 2.0 Y _{2.0,Endo} = 0.0598X - 1.4150 Y _{2,5,Endo} = 0.885X-3.9047 * Yp,c = mX + C Where:p=Concentratin in percentage	xxviii	2.5	Y _{2.5,XXIII} =0.0782X+5.1208		
2.0 Y _{1.5,Endo} =0.0464X -3.2528 2.0 Y _{2.0,Endo} =0.0598X -1.4150 2.5 Y _{2.5,Endo} =0.885X-3.9047 * Yp,c = mX + C Where:p=Concenratin in percentage		2.0	Y _{2.0,XXVIII} =0.0731X -1.3922		
*Yp,c = mX + C Where:p=Concentration in percentage	Endosulfan	2.0	Y _{1.5,Endo} =0.0464X -3.2528 Y _{2.0,Endo} =0.0598X -1.4150		
C-O-Concentation in percentage	* Yp,c = mX	+ C			
	C-C	oncenratin ir	percentage		

C=Compound

Y= Mortality Rate, Nos. of Termites

X= Time, min.

carbonyl ortho to C=O, J=9 and 2 Hz); 8.04 (dd, 2,4-pyridine carbonyl, meta to C=O, J=9 and 2Hz).

N¹-Isonicotinoyl-5,5'-dimethyl cyclohexane-4-(2-intorphenylazo)-1,2-diazole (viii)

1.11 (s, 6H, $C(CH_3)_2$); 2.14 (s, 4H, $2xCH_2$); 7.72-8.20 (m, ArH, $C_6H_4NO_2$); 7.12 (dd, 2,4-pyridine carbonyl ortho to C=O, J=9 and 2 Hz); 8.04 (dd, 2,4-pyridine carbonyl, meta to C=O, J=9 and 2Hz).

N¹-IsonicotinoyI-5,5'-dimethyl cyclohexane-4-(4-nitrophenylazo)-1,2-diazole (x)

1.11 (s, 6H, C(CH₃)₂); 2.13 (s, 4H, 2xCH₂); 7.35

(d, 2, meta to NO_2 J=6Hz), 7.93(dd, 2, ortho to NO_2 J=9 and 3Hz); (dd, 2.4-pyridine carbonyl ortho to C=O, J=9 and 2 Hz); 8.04 (dd, 2.4-pyridine carbonyl, meta to C=O, J=9 and 2Hz).

N¹-isonicotinoyl-5,5'-dimethyl cyclohexane-4-(3-fluorophenylazo)-1,2-diazole (vi)

1.13 (s, 6H, $C(CH_3)_2$); 2.10 (s, 4H, $2xCH_2$); 6.95 $^{\prime}$ 7.21 (m, ArH, C_8H_4 F); 7.12 (dd, 2,4-pyridine carbonyl ortho to C=O, J=9 and 2 Hz); 8.04 (dd, 2,4-pyridine carbonyl, meta to C=O, J=9 and 2Hz).

N¹-isonicotinoyl-5,5'-dimethyl cyclohexane-4-(N¹-2-acetyl sulphanilamidobenzeneazo)-1,2-diazole (xxviii)

1.12 (s, 6H, $C(CH_3)_2$); 2.15 (s, 4H, $2xCH_2$); 7.22-7.35 (m, 4H, ArH); 8.02 (br, s, 1H, NH); 2.38 (s, 3H, COCH₃); 7.12 (dd, 2,4-pyridine carbonyl ortho to C=O, J=9 and 2 Hz); 8.04 (dd, 2,4-pyridine carbonyl, meta to C=O, J-9 and 2 Hz).

Acknowledgment

The authors are grateful to Prof. R.N. lyengar, Director, C.B.R.I., for constant encouragement and the paper is published with his kind permission. Thanks are also due to Dr. C.P. Singh, Reader in chemistry, Sahu Jain College, Najibabad for helpful suggestions.

References

- Chem. Abstr., 96 (1982), 104425d.
- Chem. Abstr., 126 (1997), 238380u.
- Chem. Abstr., 126 (1997), 8113e.
- 4. Chem. Abstr., 127 (1997), 121722m.
- 5. Chem. Abstr., 127 (1997), 121723n.
- 6. Chem. Abstr., 127 (1997), 81441k.
- S.S. Nayal, Ph.D. Thesis, M.J.P.R. University, Bareilly, (1998).
- Y. Singh and S.S. Nayal, Pestology, 22 (1998),
 42.
- 9. Dictionary of Organic Compounds. Oxford, New York, 5 (1965), 2317.
- E.C. Woodberg and V. Koppaka, Cancer Chemotherapy Rep., 6 (1974), 58.
- F. Matsumora, Toxicology of Insecticides, Second Edition, Plenum Press, New York (1985), 15.

823/99