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Abstract 
 

This paper presents a procedure to identify the damage of a multi storey shear 
structure using residual force vector method along with Genetic Algorithm (GA) from 
sparse modal information. In system identification of structural problems, a large 
number of degrees of freedom in their finite element models are required. It is 
difficult and expensive to measure modal response at many locations. A technique 
has been first described to compute the full mode shape from partial mode shape for 
a particular frequency. Then the concept of the residual force vector is used to 
specify an objective function using the computed modal information. Finally GA has 
been implemented for optimizing this function to get the damage factors. 
Experimental data are simulated numerically by solving eigen value problem of the 
damaged structure with inclusion of random noise on the vibration characteristics. 
Reliability of the procedure has been shown by various examples of multi storey 
structure with different known modal information.  
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INTRODUCTION 
 

During the last three decades, vibration based methods have been developed and 
applied to detect structural damage in the civil, mechanical and aerospace engineering 
[1-2]. Identifying the structural damage with the measured vibration data is an inverse 
approach in mathematics. The usual damage detection methods minimize an objective 
function, which is defined in terms of the discrepancies between the vibration data 
identified by modal testing and those computed from the analytical model [3,4]. These 
conventional optimization methods are gradient based and usually lead to a local 
minimum only.  
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In the last two decades, since first introduced by Holland [5], Genetic Algorithm (GA) 
has been widely applied to various optimization problems [6]. Many authors have 
recently taken up this optimization problem using Neural Networks, Genetic 
Algorithm and Neural Network with GA [7.8.9] by studying the variation of localized 
damage as a function of modal test data and machine learning. More recently, the 
residual force concept has received increased attention as regards application to 
damage detection and assessment [7,10]. When the objective function from residual 
force concept is optimized by GA, it gives good results with noise polluted 
experimental data. As such, Mares and Surace [8] and Rao et.al. [11] have used this 
concept for damage identification in truss structures and beams along with GA. 
Panigrahi et. al.[12]  have used this concept of damage identification in a shear 
structure. Also they used this for damage identification of a tapered and non-
homogeneous beams [13,14]. In these papers, the authors have used full mode shape 
of all modes that have been considered in the objective function formulation.  
Sparsity of measured data are inevitable in testing engineering structures. Sparsity of 
measurements creates problem in identification of structures/ structural members. 
Most structures require a large number of degrees of freedom in their finite element 
models due to their size and complexity. But in practice, it is difficult and expensive to 
measure modal displacements at many locations. So, only a small subset of all the 
degrees of freedom in the model is normally measured. There are number of schemes 
available in literature to overcome the difficulty due to sparseness [15, 16, 17, 18,19 
and 20]. Mares and Surace [8] in their model for damage identification in a beam 
structure condensed the FE model by using the IRS-method (Improved Reduced 
system). Yuan et al [21] have developed a method that estimates mass and stiffness 
matrices of shear structure from first two orders of structural mode measurement. 
Chakraverty [22] proposed computationally efficient procedures to refine the methods 
of Yuan et al. [21] to identify the structural parameters from modal test data. He 
obtained the full mode shape by knowing the first and top floor modal displacement at 
a particular frequency. Chakraverty [22] has used Holzer criteria along with other 
numerical techniques in solving the above problems. Medhi et.al. [23] in their work 
utilise system identification technique for health monitoring of shear building, wherein 
parametric state space modeling has been adopted.  
In the present work, the case of lumped mass systems such as shear building is 
considered for damage identification with sparse modal information. First a method is 
being described to obtain the complete mode shape at a particular frequency from 
partial modal information. In fact, full mode shape of a particular frequency may be 
obtained by simply using the known frequency value.  
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Next, this method is used for a damaged structure in finding the full mode shape of 
each mode in terms of damage factors.  An objective function is developed using 
residual force vector considering different number of modes and corresponding mode 
shape obtained as above. This objective function is optimised by GA to obtain the 
damage factors. The algorithm is tested by taking different examples of multistorey 
structure with a damaged situations using different number of modal information. 
Noise is introduced in both frequency and mode shape parameter and the model is 
validated. As such here this study has been done to arrive at minimum number of 
modal information that may be required for better damage identification. Accordingly 
different problems are discussed.  

 
PROBLEM FORMULATION 
 
Computation of full modal information from partial modal data 
The methodology for computing unknown modal data corresponds to a particular 
frequency using known partial mode shape is explained. A highly idealised n-storey 
shear structure is considered as shown in Figure 1. For a shear structure of n levels, 

Fig.1.    Multistorey structure with 
                     n   levels.  
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with k1, k2..... kn and m1 , m2......mn as the corresponding stiffness and mass of different 
levels, the equation of motion of free vibration may be written as [25] 

 
 

Where  M and K are the global mass and stiffness matrices 
λj=ωj

2 is the jth eigen value and φj
(r) where r=1, n  designates the jth mode shape or 

eigen vector. 
The equation (1) may be alternatively expressed as 
[ ] { } { } )2(0

1
=

nXjnXnA φ  

Here n is the total number of levels of the shear structure. Suppose modal 
response is not measured at all the levels but only at some of the levels. Let total 
number of levels where modal measurements are made be Q. It means that we know 
the modal response of a total of Q levels at the jth frequency. The displacement at other 
levels may be calculated analytically from the existing modal data by rearranging 
equation (2). The levels whose modal component are known may be represented by Pq 
where q varies from 1 to Q. 
Now, the above equation may be rewritten as 
[ ] { } { } )3('

1)(
'

)()( ZA
XQnjQnXQn =

−−− φ   

where A' is the reduced A matrix obtained by eliminating  Pq
th rows and Pq

th columns. 
Similarly φj

'   is the reduced column matrix φj without Pq
th elements.  

APq’ is the Pq
th column matrix of A without the Pq

th elements in it. 
φj

'    represents the unknown modal matrix. This may be computed from equation (3) as 
below 
{ } { } )4()'()''( 1' ZAAA TT

j
−=φ  

DAMAGE IDENTIFICATION 
 
For the damage identification, two cases are investigated. In the first case, no mode 
shape information is available and in the second case two modal measurements are 
known at any two levels. For each case, first the unknown mode shape information at 
a given frequency is calculated following the method of the previous section. In a 
damaged structure, the stiffness values are not known. Hence, stiffness values of each 
floor are multiplied by corresponding damage factors i.e.βi (i = 1,2…n). The unknown 
modal information is obtained in terms of the damage factors. This full modal 
information is then used to develop the fitness function.  
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First case : Only frequency value is known 
Here, only the natural frequencies are known and no modal displacement at any level 
is known. The mode shape may be assumed to be normalized with respect to modal 
response at lth level. Here, we may assume modal data at any level as unity say at lth 
level it is unity. The equation (3) may be written as 
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i.e. [A']{φjd}={Z}, where [A'] is again a square matrix on the left hand side, 
Tn

j
l

j
l

jjjjd }........,,,..,{}{ )()1()1()2()1(' φφφφφφ +−=  and {Z} is the column vector on the 
right-hand-side of above equation (5) respectively. Similar to the earlier cases, the 
modal data for all unknown levels φjd may be obtained using equation (4), i.e. 

 
Here, it is assumed that the natural frequencies and mode shapes of the damaged 
structure continue to satisfy the eigen value.  
 
The residual force vector for jth mode in terms of βi can be written as,  
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Here Rj is a function of βi .  Rj will be a null matrix, only if a correct set of βi  and 
correct values of damaged modal information λjd and φ jd  for the jth mode of vibration 
are substituted in equation (7). 
Then the objective function in terms of damage factors may be written as, 
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)8()....,,()....,,()....,,( 21
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=

= where n 

is the number of stories and r is the number of modes taken into consideration. 
 
βi  may be obtained by minimising the objective function. But as GA deals with 
maximization problems, it is necessary to specify a modified version of the objective 
function to be maximized. The fitness function V for the present task is defined as, 

 
where C1 represents a constant used to control the value of the objective function, C2 
represents a constant used to build a well-defined function for the ideal case (i.e. with 
no experimental error). The values of C1 and C2 are taken as unity in this study.  
 
Second case:  Frequency value along with corresponding partial mode shape is 
known 
Let us first suppose that two modal measurements are made at rth and sth levels of the 
damaged structure and so, 1st to (r-1) th, (r+1) th to (s-1) th and (s+1) th to nth level 
modal components are unknown. Now equation (3) may be written for n storey 
structure including damage factors as,  
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Each of the above matrix equation (10) may be written in compact form as 
[A']{φjd}={Z}, where [A'] is the square matrix on the left hand side, 

Tn
jd

s
jd

s
jd

r
jd

r
jdjdjd }...,,,..,,...{}{ )()1()1()1()1()1(' φφφφφφφ +−+−= and {Z} is the column vector 

on the right-hand-side. Equation (5) may be written as, 

 
The fitness function may be obtained in a manner as discussed for the first case. 

 
After some trials, the GA parameters for the present work were set up as: 
Population Size: 20, Crossover probability: 0.70, Mutation probability: 0.005 
Each structural parameter βi was represented as a 10-bit binary numbers with variable 
limits 0 to 1.  
 
ILLUSTRATIVE EXAMPLES 
 
Here, a 8-storey shear structure is considered. The structural characteristics are given 
in Table 1.  Forth and seventh storey of the structure are assumed to be partially 
damaged to an extent of 45% and 30% respectively. Alternatively it means that the 
damage factors for forth and seventh storey of the structure are 0.55 and 0.7 
respectively. 
 

Table 1. The design values of stiffness and mass for eight storey structure 
 

k1 k2 k3 k4 k5 k6 k7 k8 Stiffness 
Values in 
kN/m 

108 54 54 54 45 40.5 36 36 

m1 m2 m3 m4 m5 m6 m7 
 

m8 
 

Mass 
Values in 
1000Kg. 90 36 36 36 27 27 22.5 21.6 

 
The input modal data is generated from the vibration analysis of the above shear 
structure. For the said problem, global stiffness matrix is computed by reducing the 
stiffness of the fourth and seventh storey by 45% and 30% respectively. From global 
mass and stiffness matrices, eigen value problem is solved. The frequency and mode 
shape information are given as input to the damage identification model. At first, the 
measurement noise is ignored. Then for simulating noise polluted experimental 
measurement, a random noise of 2% in frequency and 5% in mode shape has been 
imposed.  
 
The objective function has been developed from the simulated modal data using 
different numbers of frequencies. The number of modal frequencies considered is 
varied from two to eight. It is assumed that for same frequency value different 
number of modal components are known. First, it is assumed that only the frequency 
value of each mode is known and mode shape is completely unknown. Then it is 
assumed that two modal components at a particular frequency value are known. Then 

{ } ( ) ( ) )11(.'''...,( 1
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−
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number of known modal components is gradually increased. For each case the 
unknown modal information in terms of damage factors is computed and the full 
mode shape is used in the formation of objective function. The objective function is 
optimized to get the damage factors.  

 
For the above problem, the comparison of actual damage factors with the identified 
damage factors using different number of modes are shown in Table 4 when only 
frequency values are known. It is assumed that frequency values are noise polluted. 
Table 2 also shows the damage prediction in the presence of noise.   
 
From the Table 2, it is observed that in the absence of noise damage can be identified 
with a maximum error of around 10% using six modes. It may be noted as usual that 
by increasing number of modes, the accuracy can be increased. With the considered 
noise level damage can be identified using eight modes with an error of 11%.  

 
Table 2 : Damage factors obtained using only the frequency values for different number 
of modes (without noise and with noise ) 

Identified values without 
noise 
 

Identified Values wit noise 
level II 
 

Different Number of Modes Different Number of Modes 

D
am

ag
e 

Fa
ct

o 

T
he

or
et

ic
al

 v
al

ue
s 

2 4 6 8 2 4 6 8 

β1 1.0 0.801 0.984 0.933 0.948 0.712 0.811 0.890 0.921 
β2 1.0 0.861 0.860 0.998 0.959 0.745 0.843 0.863 0.918 
β3 1.0 0.801 0.856 0.916 1.000 0.927 0.909 0.859 0.932 
β4 0.55 0.450 0.597 0.583 0.560 0.664 0.601 0.561 0.531 
β5 1.0 0.950 0.881 0.917 1.000 0.959 0.959 0.859 0.890 
β6 1.0 0.891 0.957 0.996 0.929 0.881 0.881 0.891 0.960 
β7 0.7 0.774 0.772 0.769 0.789 0.665 0.765 0.789 0.669 
β8 1.0 0.823 0.916 0.900 0.939 0.863 0.863 0.901 0.902 

 
When sensors are placed at first and second level, the results obtained with various 
modes are shown in Table 3. 
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Table 3 : Damage factors obtained using the frequency value and corresponding 
partial mode shape at first and second level for different number of modes  (without 
noise and  with noise) 
 
 

 
 
From the above table, it is observed that in the absence of noise damage can be 
identified with a maximum error of around 7% using six modes. Again by increasing 
number of modes, the accuracy increases.  Damage can be identified using six modes 
with an error of 11% when the noise level as specified is considered. Inclusion of  ten 
modes in the analysis, the error falls to 5%. 
 
Table 4 shows the damage factors with frequency vales and corresponding known 
partial mode shape at first and eighth level. 
 
 
 
 
 
 
 
 
 
 
 
 
 

Identified values without 
noise 
 

Identified Values with noise  
 

Different Number of Modes Different Number of Modes 

D
am

ag
e 

Fa
ct

or
 

 T
he

or
et

ic
al

 v
al

ue
s 

2 6 8 
 

2 4 8 
 

β1 1.0 0.851 0.998 0.943 0.988 0.802 0.811 0.900 0.956 
β2 1.0 0.891 0.890 0.976 0.966 0.745 0.843 0.899 0.938 
β3 1.0 0.880 0.889 0.936 0,989 0.927 0.909 0.909 0.945 
β4 0.55 0.490 0.598 0.523 0.541 0.601 0.570 0.579 0.534 
β5 1.0 0.941 0.899 0.932 0.987 0.959 0.959 0.891 0.940 
β6 1.0 0.867 0.949 0.999 0.951 0.881 0.881 0.893 0.956 
β7 0.7 0.731 0.750 0.735 0.728 0.679 0.752 0.742 0.719 
β8 1.0 0.860 0.902 0.932 0.962 0.863 0.863 0.921 0.933 
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Table 4 : Damage factors obtained using the frequency value and corresponding 
partial mode shape at first and eighth level for different number of modes  (without 
noise and  with noise)  

 
 

From the above table, it is observed that in the absence of noise damage can be 
identified with a maximum error of around 5% using six modes. Similar trend of 
accuracy may be seen by increasing the number of modes. Here also by considering  
noise level as mentioned, damage can be identified using six modes with an error of 9% 
and the error falls to 4% with eight modes.  
 
Lastly, Figure 2 shows the best fitness and average fitness values versus the number of 
iterations for the case with six modes and corresponding known first and last level 
modal data with noise. The best fitness value has been obtained here at 602 iteration 
number.  
 

Identified values without 
noise 
 

Identified Values with noise  
 

Different Number of Modes Different Number of Modes 
D

am
ag

e 
Fa

ct
or

 
 T

he
or

et
ic

al
 v

al
ue

s 
4 6 8 

 
2 4 6 8 

 

β1 1.0 0.841 0.987 0.953 0.995 0.891 0.881 0.952 0.961 
β2 1.0 0.901 0.920 0.976 0.989 0.815 0.876 0.912 0.979 
β3 1.0 0.891 0.912 0.964 0,987 0.827 0.918 0.918 0.965 
β4 0.55 0.498 0.531 0.541 0.542 0.598 0.597 0.532 0.557 
β5 1.0 0.891 0.819 0.978 0.989 0.912 0.939 0.961 0.971 
β6 1.0 0.898 0.949 0.979 0.980 0.901 0.911 0.987 0.957 
β7 0.7 0.721 0.727 0.733 0.709 0.739 0.726 0.689 0.721 
β8 1.0 0.871 0.932 0.961 0.978 0.887 0.887 0.921 0.959 
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DISCUSSION 
 

In this study, an approach for detecting damage based on residual force vector method 
using GA has been presented. One of the main advantages of the GA approach is its 
easy implementation, relying on forward analysis. Furthermore, unlike many classical 
methods, there is no need for computation of derivatives and no initial guess about the 
structural parameters  is needed. Of specific importance in practical applications is that 
the new approach has exhibited greater robustness in numerical simulations of 
structural systems, particularly the influence of noise on the experimental data on the 
effectiveness of the identification procedure.  
Moreover method has also been described to get the full mode shape from partial 
mode shape. The methodology is used along with residual force vector method and 
GA to get the damage factors from sparse modal data. From the tables it is observed 
that when there is no noise on simulated data the accuracy in getting the damage 
factors is better than those with noise on modal data. By increasing the number of 
known modes, the accuracy increases. Also the error in the computation when only 
frequency value is known for getting damage factors is more than those obtained with 
simultaneous knowledge of frequency value with first and second level modal data. 
Again the accuracy depends upon number of known modal information and it 
increases as we take more known data. It is also observed that the accuracy is better 
using known modal data of first and last level than by using the  known modal data at 
1st and 2nd level. This may be due to the less computational error in finding unknown 
mode shape knowing the first and second level data then first and last level data.  
 

 
 
 
 

Fig.2 : Best fitness value and average fitness value vs. No. of iterations 



TCSECT-2009 
 

 308

CONCLUSIONS 
 

A procedure has been presented for the simultaneous location and quantification of the 
damage in shear structure with sparse modal information. Genetic algorithm has been 
employed for which the optimization function has been formulated in term of modified 
residual force vectors. Investigation has also been done to study the said problem with 
and without noise polluted experimental data. Minimum number of modes and 
corresponding partial modal information required to get the best result has been 
discussed. The damage factors identified for the problem, which are obtained by using 
GA for optimization purpose, show excellent agreement with those chosen for the 
mechanical simulation of these damaged structures.  
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