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ABSTRACT 
 

This paper presents a procedure to identify the location and extent of damage in a multi storey 
structure from minimum number of modal information. Earlier studies include the all or a part of 
the total frequencies and their full modal data for the identification of the structural damage. A 
method has been proposed here to estimate all the components of the mode shape of a particular 
order of frequency by knowing the modal test data of ground level of the structure. The reliability 
of the procedure has been shown by various examples of multistorey structure. 
 
KEY WORDS: Identification, Structure, Stiffness, Mass, Frequency Parameter, Mode shape 
 
INTRODUCTION 
 
The modelling in structural dynamics problems may be categorized as direct or inverse problem. 
The direct problem consists of finding the response for a specified input or excitation. In the 
inverse problem, first the response is known then to develop an accurate mathematical model of 
the system, which is known as the system identification. This involves the determination of the 
models and the estimation of values of structural parameters using measured data. Study of 
system identification technique for knowing the actual states of engineering structures have 
received much attention in recent years. This is because of the well-known fact that the full-scale 
experimental studies are more expansive and also in some cases difficult to perform. Intelligent 
mathematical/computational algorithms decrease the instrumentation cost in general and also 
these are important, as full-scale instrumentation is somewhat difficult in certain structures.  
 
Although, few researchers have studied the above issues but, at present also, tremendous research 
and continuous efforts are being made to refine and develop the analytical models for the accurate 
results. Some representative publications on the subject are available in the work of Beck [1], 
Ibanez [2], Natke [3], Masri and Werner [4] and Sinha and Kuszta [5]. Very recently, a review 
paper has also been written for system identification of buildings by Datta et al. [6], where many 
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references may be found related to this topic. To elaborate the survey, few of the recent research 
that has been done are discussed in the following paragraph. 
 
Loh and Ton [7] studied a system identification approach to detect changes in structural dynamic 
characteristics on the basis of measurements. They used the recursive instrumental variable 
method and extended kalman filter algorithm for the identification algorithm. The potential of 
using neural network to identify the internal forces of typical systems has been investigated by 
Chassiakos and Masri [8]. A localized identification of many degree of freedom structures is 
investigated by Zhao et al. [9] and a memory-matrix based identification methodology for 
structural and mechanical systems are studied by Udwadia and Proskurowski [10]. Chakraverty 
[11,12] used neural network for the numerical experiment for identification of structural systems 
where as the identification of stiffness parameters of multistorey frame structure from dynamic 
data have been studied by Chakraverty [13]. 
 
In addition to the above reviewed papers, there exists other research works in the present area of 
study in the literature. However, the fundamental concepts are similar to those mentioned above. 
 
Recently, Yuan et al [14] have developed an excellent method that estimates mass and stiffness 
matrices of shear Structure from first two orders of structural mode measurement. A very recent 
paper by Chakraverty [15] proposed computationally efficient procedures to refine the methods of 
Yuan et al. [14] to identify the structural parameters from modal test data. The refinement had 
been obtained by using Holzer criteria [16] along with other numerical techniques [17].  It reveals 
from the literatures that there exist studies only when either the sensors are in all of the levels or 
the sensors are placed in first and last level of the structure. Although some have discussed the 
method in general but in particular, to the best of the present authors’ knowledge, it is not 
investigated at least how many number of 
sensors are required and at what level for 
estimation of the full mode shape for a 
particular order of frequency. So, here a 
methodology has been proposed from the 
data which are available by varying the 
number of sensors and the level of the 
building where these are installed. As such 
solutions have also been provided by 
utilizing a minimum number of data to 
identify the corresponding structural 
parameters.  

 
MATHEMATICAL MODEL 
 
As regards, system identification refers to 
the branch of numerical analysis, which 
utilizes the experimental input and output 
data to develop mathematical models of 
systems, which finally identify the 
parameters. In other words, the methodology 
solves the inverse vibration problems to 
identify the properties of a structure from 
the measured data. 
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Figure 1. Multistorey structure with n  levels. 
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For a shear Structure of n levels (Figure 1), the equation of motion subject to ambient vibration 
may be written as 
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Where M and K are the global mass and stiffness matrices given by 
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where as  

{ } { } { } { }TnyyyyandT
nyyyy LL&&LL&&&&&& ,2,1,2,1 ==

are the vectors of acceleration and deflection respectively. 
 
For simple harmonic motion putting the following  

{ } { } tie
TnT
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in Equation (1), these may be written as,  
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where λi=ωi

2 is the ith eigen value and φi
(r), r=1,n  designates the ith mode shape or eigen vector. 
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Determination of Mode Shape from Partial Modal Data 
 
Earlier researchers [14, 15] have given the solution of all components of mode shape for a 
particular frequency of the structures simply by knowing the first and last level modal data. Here, 
the authors have derived procedures for getting the full mode shape corresponding to a desired 
frequency of the structure according as a) the modal data of any two levels  are known and  (b) 
modal data for only the first level is known. These three cases are explained below by considering 
the mass and stiffness values as different for different levels. 
 
Case (a) 
 
Let us first suppose that two sensors are placed at rth  and  sth  levels and 1st to (r-1)th , (r+1)th to (s-
1)th  and (s+1)th  to nth level modal components are unknown. Using the known data for rth  and  
sth   levels i.e. φi

(r) and φi
(s) (of the i-th mode) in Equation (2), the following matrix  equation may 

be written, 
 
The above equations may be written in matrix form as, 
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where Pt=kt+k(t+1)-λimt  for t= 1,2, ….r…s….n. 
 
For a special case of this methodology, if the sensors are placed at 1st and rth level the above 
matrix equation may be written as 
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Each of the above matrix Equation  (3a) and  (3b) may be  written in compact form as 
[A]{φu}={Z}, where [A] is the square matrix on the left hand side, 

and {Z} is the column vector on the right-hand-side of the above 
Equations (3a) and (3b).The compact form of the matrices may now be written as 

Tn
i

s
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{ } ( ) ( ) )4(.1 ZAAA TT
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−
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Accordingly, Equation (4) gives  unknown modal data  for the particular order of frequency. 
 
Case (b) 
 
In this case a sensor is supposed to be placed at the first level only, where all other level modal 
data are unknown. Using the known modal data for first level, the matrix equation may now be 
given as, 
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Again writing the above equation as [A]{φu}={Z}, where [A] is the square matrix on the left hand 
side,  and {Z} is the column vector on the right-hand-side of 
the above Equation (5) respectively gives the modal data for the second to n the level of the 
multistorey structure. 

Tn
iiiiu }........,,,{}{ )()4()3()2( φφφφφ =

 
RESULTS AND DISCUSSIONS  
 
The methodology has been used for various data sets with different number of sensors placed at 
different levels of the structure. Three problems are solved here, to show the reliability and 
efficacy of the developed methodologies. 
 
(i)Problem 1 
 
This problem refers to the case (a). Let us consider a ten storey structure. The stiffness and mass 
values of all the levels are given in Table I. It is supposed that the sensors are placed at first and 
sixth levels. So, the modal components for the first and sixth levels are available as given in 
Table II. Equation (3b) is used to evaluate all the components of the mode shapes for 1st and 2nd 
order frequency parameters. Accordingly Tables III and IV give the evaluated and real values of 
the mode shapes. These tables show good agreement between the computed and real values. 
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Table I. The design values  of stiffness and mass taken for ten storey structure 
 

k1 
/100 

k2 
/100 

k3 
/100 

k4 
/100 

k5  k6 k7  k8  k9 k10  Stiffness 
Values 
in N/m 
X 100 

1080 540 540 540 450 405 360 360 360 270 

m1 m2 m3 m4 m5 m6 m7 
 

m8 
 

m9 
 

m10 
 

Mass 
Values 
in Kg. X 
100 

900 360 360 360 270 270 225 216 198 189 

 
Table II. Original Data for ten storey structure ( First and Sixth level modal      

shapes are known) 
 

First Level Sixth level 
Frequency Parameter Displacement 

Vector 
Frequency 
Parameter 

Displacement 
Vector 

 
 
 
 

First order 
0.0511874   1.000 0.0511874   9.744877 

Second order        0.3202796            1.000        0.3202796         1.570133 
 

Table III. Computed values of unmeasured modal components for the ten storey 
structure when 1st and 6th level modal components are known for 1st order 

frequency 
 

φ1
(2) φ1

(3) φ1
(4) φ1

(5) φ1
(7) φ1

(8) φ1
(9) φ1

(10) 

 
 
 
True 
Value 

2.914 4.729 6.383 8.106 11.213 12.323 13.054 13.539 

Present 
method 

2.914 4.729 6.383 8.106 11.213 12.323 13.054 13.539 

 
Table IV. Computed values of unmeasured modal components for the ten storey 

structure when 1st and 6th level modal components are known for 2nd order 
frequency 

 
φ2

(2) φ2
(3) φ2

(4) φ2
(5) φ2

(7) φ2
(8) φ2

(9) φ2
(10) 

 
 
 
True 
Value 

2.466 3.405 3.618 2.946 -0.354 -2.208 -3.638 -4.689 

Present 
method 

2.466 3.405 3.618 2.946 -0.354 -2.208 -3.638 -4.689 

 
(ii)Problem 2 
 
This problem is an example of case (b). A four storey structure is considered with a sensor placed 
at first level only. So, the data of the first level are available as given in Table V. All the 
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components of the mode shapes for 1st and 2nd order frequency parameters may be calculated 
from Equation (5).  Tables VI gives the evaluated and real values of all components of the mode 
shapes for 1st and 2nd order frequencies along with a comparison of data values of reference [15]. 
These tables show how the computed values match with the real values. 

Table V. Original Data for four storey structure (First level modal component          
is known) 

 
First Level 

Frequency Parameter Displacement Vector 
 
 

First order 0.2214199 1.00000 
Second order 1.3220638 1.00000 

 
Table VI. Computed values of unmeasured modal components for the four storey 
structure when 1st level modal component is known for 1st and 2nd order frequency 

 
1st order frequency 2nd order frequency 

φ1
(2) φ1

(3) φ1
(4) φ2

(2) φ2
(3) φ2

(4) 

 

 
 
 

True 
Value 

2.630 3.873 4.544 0.796 -0.108 -0.918 

Present Method 
(Without Holzer) 

2.630 3.873 4.544 0.796   -0.108 -0.918 

Method of 
reference [15]  

2.630 3.873 4.544 0.796 -0.108 -0.918 

 
 (iii)Problem 3 
 
Here the ten storey structure (as discussed in Problem 1)  with known modal value of 1st level 
only is considered which is again an example of case (b). The known modal value is shown in 
Table VII. Unknown modal components for 1st and 2nd order frequencies are computed from 
Equation (5) which are incorporated in Tables VIII and IX. 
 

Table VII. Original Data for ten storey structure (First level modal component  
is known) 

 
First Level 

Frequency Parameter Displacement Vector 
 
 

First order 0.0511874   1.0000 

Second order 0.3202796 1.0000 
 

Table VIII. Computed values of unmeasured modal components for the ten storey 
structure when 1st level modal component is known for 1st order frequency 

 
φ1

(2) φ1
(3) φ1

(4) φ1
(5) φ1

(6) φ1
(7) φ1

(8) φ1
(9) φ1

(10) 

 
 
 
True 
Value 

2.9146 4.7299 6.3837 8.1069 9.7448 11.2135 12.3233 13.0547 13.539

Present 
method 

2.9146 4.7299 6.3837 8.1069 9.7448 11.2135 12.3233 13.0547 13.539
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Table IX. Computed values of unmeasured modal components for the ten storey 
structure when 1st level modal component is known for 2nd order frequency 

 
φ2

(2) φ2
(3) φ2

(4) φ2
(5) φ2

(6) φ2
(7) φ2

(8) φ2
(9) φ2

(10) 

 
 
 
True 
Value 

2.466 3.405 3.618 2.946 1.570 -0.354 -2.208 -3.638 -4.689 

Present 
method 

2.466 3.405 3.618 2.946 1.570 -0.354 -2.208 -3.638 -4.689 

 
CONCLUSIONS  
 
As already mentioned, the present paper demonstrates the proposed methodology for multistorey 
shear structures using minimum number of modal information.  Result of the example problems 
show that the method is accurate enough and reliable. The procedures and the methodology are 
discussed in a concise and simple manner to evaluate the modal components for a particular order 
of frequency of a multi storey structure if at least  modal value of ground level is known. 
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