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ABSTRACT 
  
Non-homogeneous structural members such as beams are very important in various 
engineering applications and for experimental analysis purposes. A minor damage on any part 
of the structure reduces the strength of the structure and leads to a major failure. So, the 
identification of damage is very important and essential at an early stage. In this paper, a new 
formulation of an objective function for the genetic search optimization procedure along with 
the residual force method is presented for the identification of macroscopic structural damage 
in a non-homogeneous beam. The developed model requires experimentally determined data 
as input and detects the location and extent of the damage in the beam. Here, numerically 
simulated data using finite element models of structures are used to identify the damage at a 
reasonable level of accuracy. Damage parameters given theoretically are compared by the 
present procedure and are found to be in good agreement. 
 
KEYWORDS: Damage factor, Non-homogeneous Material, Genetic Algorithm (GA), 
Residual Force, Eigen Value, Beam 
 
INTRODUCTION 
 
During the last three decades, vibration based methods have been developed and applied to 
detect structural damage in the civil, mechanical and aerospace engineering communities ([1] 
and [2]). These methods are based on the fact that the vibration characteristics of structures 
(namely frequencies, mode shapes, and modal damping) are functions of the structural 
physical parameters such as mass, stiffness and damping. Structural damage usually causes a 
decrease in structural stiffness, which produces changes in the vibration characteristics of the 
structure. Gawronski and Sawicki [3] employed modal norms to determine damage locations. 
The residual force concept has received wide attention for application to damage detection 
and assessment. Residual force provides an objective function to be minimized for achieving 
the dynamic balance. 
 
Identifying the structural damage with the measured vibration data is an inverse approach in 
mathematics. The usual damage detection methods minimise an objective function, which is 
defined in terms of the discrepancies between the vibration data identified by modal testing 
and those computed from the analytical model ([4] and [5]). However, these conventional 
optimization methods are gradient based and usually lead to a local minimum only. A global 
optimization technique is needed to derive a more accurate and reliable solution. 
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In the last two decades, since first introduced by Holland [6], Genetic Algorithm (GA) has 
been widely applied to various optimization problems [7]. Many authors have recently taken 
up this optimization problem using neural networks ([8] and [9]), Genetic Algorithm ([10] 
and [11]) and neural network with GA [12] by studying the variation of localized damage as a 
function of modal test data and machine learning. As compared with the traditional 
optimization and search algorithms, GA search from a population of points in the region of 
the whole solution space, rather than a single point, and can obtain the global optimum. 
Moreover, GA has the advantage of easy computer implementation. These properties make 
GA successful and powerful in the field of structural optimization [13]. 
 
As members are frequently operated in extremely thermal and mechanical environment 
recently, various kinds of new materials have been developed. As one of new materials, 
functional inhomogeneous materials have received attention, and practical applications of 
them are anticipated over a multi-scale range from aerospace field to MEMS one. Research 
and development of functional inhomogeneous materials such as functionally graded 
materials and composite materials contribute to weight saving and improvement in stiffness 
or material strength in members. Such weight saving in members often results in considerable 
decreases in thickness and stiffness, and flexible members cause vibration resulting from time 
variation of heating, which is called thermally induced vibration. Redecop [14] has studied 
the free vibration characteristics of the non-homogenous shells. Bhangale and Ganesan [15] 
have have analysed the buckling and vibration behaviour of functionally graded sandwich 
beam.When thin-walled members are subject to cyclic thermal and mechanical loads, there 
exists a lot of chance of failure of the member. There exists many methods to identify damage 
in a structure in particular to homogeneous beams, plates and shells ([16], and [17]), but to the 
best of our knowledge method for non-homogeneous structure is scarce. It is due to the fact 
that the inclusion of the function for the non-homogeneity made the governing equation 
complex and thereby the damage detection also becomes complex by traditional methods. 
Accordingly, a powerful and reliable method such as Genetic Algorithm (GA) has been 
established which may be used intelligently to identify and quantify the damage. Here GA 
along with residual force vector method has been used for damage identification.   
 
This paper introduces the concept of residual force vector to specify an objective function for 
an optimization procedure, which is then solved using a Genetic Algorithm. Rao et al. [18] 
have used this procedure for homogenous cantilever beam, truss structures and portal frames. 
Panigrahi et al.18 addressed the problem of damage identification in a cantilever beam of 
homogenous material only by changing the selection methods in GA. This paper is an 
extension of Panigrahi et.al. [19] by taking beams of non-homogenous material. Here non-
homogeneity parameters are introduced in the governing equation to develop the model. 
Damage parameters as used corresponds to the reduction in stiffness of an element from 
which the structure is composed of. GA is employed to determine the values of these 
parameters by following an iterative process. When the objective function is optimized, 
values of the parameters indicate the state of the structure. Here, experimental data were 
simulated numerically by using finite element model of non-homogenous beam and 
simulations have been done. It is seen that the identified damage factors are in good 
agreement with the theoretical one. A computer programme using MatLab is employed to 
find the location and extent of the damage. 
 
RESIDUAL FORCE METHOD 
 
This section describes the construction of dynamics of damaged structures. The governing 
equation of motion of the dynamics of a multi degree freedom system is given by  
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where [M] and [K] are (n X n) system mass and stiffness matrices and X (t) and F (t) are  (n X 
1) physical displacement and applied force vectors. 
 
The jth eigen value equation for ambient vibration associated with equation (1) is  
 

)2(0}{][}{][ =− jjj MK φλφ  
where λj and φ j are the jth eigen value and corresponding eigen vector. 
 
In the finite element model of the structure, the global stiffness can be represented as a sum of 
the expanded element stiffness matrices. 
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Where ki  represents the expanded stiffness matrix of the ith element and m is the total number 
of elements. 
 
When damage occurs in a structure, the stiffness matrix of the damaged structure [Kd] can be 
expressed as a sum of element stiffness matrices multiplied by damage factors associated with 
each of the m elements αi (i = 1,2,…m), resulting from the damage. 
 
Then, stiffness matrix of damaged structure may be given by   
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The values of the parameters fall in the range 0 to 1. The value  αi =1 indicates that the 
element is undamaged and αi=0 or less than 1 implies completely or partially damaged 
element respectively. 
 
If it is assumed that the experimental natural frequencies and mode shapes of the damaged 
structure continue to satisfy the eigen value equation (2), the jth mode of the damaged 
structure can be written as  
[ ] )5(0}{][}{ =− jdjdjdd MK φλφ  
 
where λjd is the experimentally determined eigen value corresponding to the jth mode shape of 
the damaged structure. Furthermore as already pointed out, the stiffness matrix is directly 
affected by the damage and the mass matrix M is assumed to be unaltered. 
 
By substituting equation (4) in equation (5), an expression for residual force vector for  jth 
mode in terms of αi can be written approximately as 
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Rj will be zero, only if correct sets of αi are introduced under available damaged modal 
information λJD and φ jd for a particular mode j. 
 
IMPLEMENTATION OF GENETIC ALGORITHM 
 
GA is a search method based on Darwin’s theory of evolution and survival of the fittest. 
Based on the concept of genetics, GA simulates the evolutionary process numerically. 
Analogous to genes in genetics, GA represents the parameters in a given problem by encoding 
them in a string. Instead of finding the optimum from a single point in traditional 
mathematical optimization methods, in GA, a set of points, that is, a population of coded 
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strings, is used to search for the optimal solution.  Simple GA consists of three operators: 
reproduction, crossover, and mutation ([7] and [20]). 
 
To implement GA, it is necessary first to 
devise a general coding system for the 
representation of the design variables. Most 
commonly the design variables are coded 
by a bit-string. Next step of the procedure 
is reproduction, which incorporates the 
concept of natural selection. The fitness of 
different members of the population must 
be evaluated before mating to produce the 
next generation. There are a number of 
methods of mating pool selection out of 
which roulette wheel and Tournament 
selection are mostly used by number of 
authors for reproduction purpose.  In this 
paper a method known as steady-state 
selection is selected for reproduction 
purpose. The main idea of the selection is 
that bigger part of the chromosome should 
survive to next generation. After the 
reproduction phase is over, the population 
is enriched with better individuals. 
Crossover operator is applied to the 
matching pool with a hope that it would 
create a better string. Following the 
crossover, the strings are subjected to 
mutation. The problem presented in the 
section below for which the search 
procedure adopted is illustrated by flow chart in Figure 1. The procedure is repeated until the 
new generation ceases to improve the objective function that shows the occurrence of the 
convergence. 

Initial 
Population 

F.E. 
Analysis 

Fitness 
Evaluation 

Mutation 

Crossover

Selection 
Criteria 

End 

Stop 
Criterion 

Figure 1. Flow Chart of Genetic Search

 
OBJECTIVE FUNCTION FOR GA FROM THE RESIDUAL FORCE  
VECTOR  
 
From equation (6), it is found that the residual force vector is a (n X n) matrix where n is 
number of modes. If [Kd] and [M] are real symmetric matrices it can be shown that the 
diagonal terms of matrix [R] are zero, when a correct set of λd and φd are introduced. Hence 
the function of damage factors in the present situation is as follows: 
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Where m is the number of elements and n is the number of modes. 
 
Here our problem is to find out first the minimum residual forces. The objective function V in 
the present task is an inverse function defined as below 
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The genetic search procedure requires a proper selection of crossover and mutation operators. 
After some trials, the GA was set up as follows: Population Size -20, crossover probability-
0.25 and mutation probability –0.01. Each structural parameter αi was represented as a 10-bit 
binary numbers with variable limits 0 to 1.  
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ILLUSTRATIVE EXAMPLES 
 
Cantilever Beam with Homogenous Material 
A cantilever beam with homogenous material (Figure 2) is considered first for the damage 
detection and extent of the damage using residual force vector method along with genetic 
algorithm. The beam is simulated numerically with a finite element model taking five 
elements. Each element is having 
both translation and rotational 
degrees of freedom at each nodal 
point to give a total of twelve. 
Because the fixed point degree of 
freedom (dof) has zero rotational 
and translation movements, the 
total dof are ten .The properties of 
the beam chosen are as follows: 
modulus of Elasticity E = 70.3 

GPa; Cross-sectional area A= 1.82 x 10-4 
m2; Moment of Inertia I= 1.46 x 10-9 m4; 
density ρ  = 2685 kg/m3; Total length of 
the beam l = 0.5 m 

1 2 3 4 5

    1            2           3           4              5            6    

Figure 2. Cantilever Beam Under Consideration 

Figure 3. One Element Force Diagram 
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Figure 3 shows the second element of the 
beam. Q3 and Q5 are the transverse 
displacement and Q4 and Q6 are the 
rotational vectors. There are total four 
degrees of freedom. For the element as 
shown le=0.1 m and other parameters 
remain same as of the full beam. 
 
The element mass and element stiffness matrices for this element may be written as   
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Two different situations for this case are considered as (a) beam is in a state of undamaged, 
(b) the beam having element 2 damaged partially to an extent of 50% and element no. 3 by 
30%.  From equations 9 and 10, the global mass and stiffness matrices were calculated for 
undamaged beam. Again by reducing the stiffness of the second element by 50% and 4th 
element by 30%, the global stiffness and mass matrices were calculated for the damaged 
structure.  
Table 1. Comparison of First Six Natural Frequencies between undamaged and 

damaged cantilever with homogenous material  
Frequency Parameter 

Undamaged beam 203.83 1277.98 3589.46 7090.92 11769.1 19551.8 
179.26 1178.01 3040.38 6425.67 10488.8 17915.3 Damaged beam 
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Now FE analysis is performed to 
solve the eigen value problem of 
these two situations and the vibration 
frequencies are presented in Table 1. 
It is found as usual that the 
frequencies in damaged structure in 
all modes are lower than the 
undamaged one. 
 
The modal data from Table 1 are 
employed as input to the model for 
finding out the values of damage 
factors from which the location and 
extent of damage may be identified. 
Figure 4 shows the best value of the 
objective function verses the number 
of iterations. Here, the best value was 
established at iteration number 25 
because when the iteration number was increased there was no improvement in the solution. 
Accordingly Figure 4 shows this behaviour up to 500 iterations. 

Figure 4. Graph for Maximum Value of  
Objective Function Verses No. of Iterations
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Table 2. Results of identified damage factors (αi) of cantilever beam of 

homogenous material 
Undamaged Situation (a) Damaged Situation (b) Element 

No. Theoretical Identified Theoretical Identified 
0.95 1 1.0 1.0 0.95 
0.47 2 1.0 0.5 0.96 

3 1.0 0.91 1.0 0.93 
4 1.0 0.7 0.93 0.67 
5 1.0 1.0 0.95 0.98 

 
From Table 2 it reveals that in both the damaged and undamaged situations the theoretical and 
GA identification approach are in good agreement. Percentages of error for both the cases are 
incorporated in this table. 
 
Cantilever Beam with Non-homogenous Material  
 
Here the same cantilever beam (Figure 2) with non-homogenous material is considered. The 
modulus of elasticity varies along with the length of the beam. The modulus of elasticity at 
any distance x from free end is given by E=E (1+r) where E0 0 = Modulus of elasticity at the 
free end and r = x / l and other parameters same as previous example. Figure 6 shows the 
third element of the tapered beam. Q  and Q  are the transverse displacement and Q  and Q5 7 6 8 
are the rotational vectors. There are total four degrees of freedom. For the element as shown 
l =0.1 m and other parameters remain same as of the full beam. e
 
Putting Eq. 12 and 13 in Eq. 9 and 10, me eand k  will both become the functions of the 
taper parameters. By putting the appropriate thickness parameter, the values can be 
computed. 
 
Four different situations with r = 0.006 for this case are considered as (a) beam is in a 
state of undamaged, (b) the beam having element 3 damaged partially to an extent of 
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40% (c) the beam having element 2 damaged partially to an extent of 50% and 
element number 4 to an extent of 30%. 
 
From equations 9 and 10, the global stiffness and mass matrices were calculated for 
undamaged beam putting original values of stiffness parameters for the case (a). For 
the case (b) the global matrices were calculated by reducing the stiffness value of the 
3rd element by 40% and for the case (c) by reducing the stiffness value of the 2nd 
element by 50% and 4th element by 30%.  
 
Figures 5 and 6 show the best value of the objective function verses the number of 
iterations for case (b) and case (c) respectively. 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
                            

Figure 5. Graph for Maximum Value of 
Objective Function Verses No. of  Iterations 

Figure 6. Graph for Maximum Value of Objective 
Function Verses No. of Iterations  
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As discussed previously, it may be seen from figures 7 and 8 that the best value is 
achieved at 28  and 32 number iterations respectively. Again it is worth mentioning 
that there is no further development of the best value after these iterations. 

 
 

Table 3. Results of identified damage factors (αi) of non-homogenous cantilever 
beam 

Undamaged Situation 
Case (a) 

Damaged Situation  
Case (b) 

Damaged Situation  
Case (c) 

Ele-
ment 
No Theore

tical 
Identified Theoretical Identified Theoretical Identified 

 
1 1.0 0.96 1.0 0.95 1.0 0.97 
2 1.0 0.95 1.0 0.94 0.5 0.48 
3 1.0 0.97 0.6 0.56 1.0 0.97 
4 1.0 0.89 1.0 0.92 0.7 0.64 
5 1.0 0.93 1.0 0.98 1.0 0.93 

 
From Table 3 it reveals that in both damaged and undamaged situations the theoretical 
and GA identification approach are for the present problem in good agreement.  
 
SPECIAL CASE  

 

Here, the homogenous structure equation may be obtained simply by putting r=0 in non-
homogenous structure equation i.e. making it to a homogenous beam. The case (c) in the 
second example is solved by putting r=0 and compared with the case (b) of the first example. 
They are found to be in good agreement, which shows the reliability of the model for the non-
homogenous beam.  
 

 

CONCLUSION 
 
A procedure has been presented for the simultaneous location and quantification of the 
damage in engineering structures with non-homogenous materials. Genetic algorithms have 
been employed for which the optimization function has been formulated in terms of modified 
residual force vectors. The damage factors identified for the beam problem, which are 
obtained by using GA for optimization purpose, show excellent agreement with those chosen 
for the mechanical simulation of these damaged structures.  
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