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Analysis of a shallow elliptic paraboloid

shell with edge beams

M. N. Keshava Rao and S. P. Sharma

The paper presents a method for the analysis of shallow elliptic paraboloid shells having edge

beams.

The bending theory equations are solved by Fourier methods.
and the stress resultants are presented in the form of contours.

A shell has been analysed
This method of solution is formally

exact; however, heavy computations are necessary for good accuracy.

Theoretical and experimental investigations on shells
have clearly revealed that the stress distributions ob-
tained by the use of the membrane theory are far from
the actual state of stress. Especially for shallow shells
without axial symmetry the assumption of momentless-
ness, on which the membrane theory is based, is highly
misleading®. Furthermore, the membrane theory fails
to show up the differences in the distribution of stresses
that must occur when the boundary conditions are
changed. Only a bending theory can yield a better
picture of stresses in such shells.

Even while using a bending theory to analyse shells
it has been usual to assume certain boundary conditions,
known as the ‘Navier conditions’, to reduce the mathe-
matical complexities. These conditions can never be
satisfied physically and are far from the usual conditions
occurring in practice.

Shells are usually supported on, or built into walls,
diaphragms, or beams supported on columns. If a general
method of solution can be obtained for the analysis of a
shell supported on edge beams, the boundary conditions
encountered in practice become particular cases of the
general method. For example, by taking the flexural
rigidity of an edge beam in the vertical plane to be
infinite, that inthe horizontal plane andalsothe torsional
rigidity to be zero, a ‘simple support’ can be simulated.
The case of a ‘built-in support’ is covered by taking
the torsional and flexural rigiditiesof an edge beam tobe
infinite.

In this paper a shallow elliptic paraboloid shell has
been analysed using the bending theory for shallow
shells due to Marguerre!. The shell is assumed to be
supported on edge beams which are in turn simply
supported at their ends (Fig 1).

Basic equations

The equation of an elliptic paraboloid, with reference
to the co-ordinates shown in Fig 1, is given by

2= 1 (1 + 1?) L ()

where » and ¢ are constants.
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Marguerre’s equations for a shell of constant thickness
h, having a middle surface defined by equation (1) and
subjected to a uniformly dlqtnbuted load ¢, take the
form :

V4F+Eiz(thx~|—rwyy) : 0 OGO
and
DN Yw — (rFyy + tFye) = gz SO At O RO 1)
where w is the deflection of the shell, F is an Airy stress
function and the biharmonic operator /4 is given by

4 b4 34
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Suffixes denote partial differentiation.
The pair of equations (2) can be combined to give a
single eighth order differential equation in terms of
another function®,

DD + ERMIO — g =0 .ovviiiineninann. (8)
where :
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Cartesian co-ordinates
Biharmonic operator
Airy stress function

w _ Deformations in #, y, and z direc-
tions, respectively.

Uniformly distributed load inten-
sity (positive in the z direction)

Generalized stress-strain function
Piicher’s operator -
Modulus of elasticity.

Shell thickness

Dimensions of the covered area
In-plane stress resultants
Moment resultants

Qy Normal shears

NOTATION

Poisson’s ratio

v

D equals EA%[12 (1-v?)

G Modulus of rigidity

€, Torsional rigidity of the edge

beams (torque per unmit twist
per unit length)

Second moments of area of sec-
tions of edge beams about y
and z axis, respectively.

Iy- j’zh IZ; fz

Asids Sectional area of the edge beams

D, Particular integral in @

o equals #nwfe where # is an odd
integer

g equals /b where m is an odd
integer.

ress resultants Ny, Ny, Qg Qy, and Ny, the
My, My, and Mgy, and the displacement w
tained from the fcllowing relations :

e ]
= Fya
= — ny
— VAL
"D (02 + vioyy) } ........ ()
= — D (wyy + ViWzz)
E D1 —v) way
= — D (Wzzz + Wayy)
= — D (wyyy + Wyzz)

S“

2 Positive forces and moments acting on an element
of a shell

lary conditions

unled that the edge beams and the shell are
ted at the centre of the beam section. Since the
Te shallow the curvature of the edge beams is
d it is assumed that the equations for straight
are good enough for the purpose of forming the
¥ conditions. These conditions are explicitly
elow for a typical edge at y = b/22.

For vertical equilibrium of an' element of the beam
lEIy Wyxnxr = Zy Fxg; — 2z Fzy = D[Wyyy + (2 o V)

w:gzy] .................. (6a)
For horizontal equilibrium :
1 1
EI, [G'—k (Fay)zaz + Eh (Fyy — vE3z)may
+ (2y Wz -+ 2z Wy)aas — (za:wz)xmy]
= Faz + 2y D [wyyy + (2 — V) Waay] ... (60)

From consideration of the torsional equilibrium of an
element,

C wysy -+ D (Wyy + v Wag) =0 - (6¢)
and for strain compatibility in the longitudinal direction,

€T
EA, U, :f Nys dx /
aj2

which can be simplified to ;
% (Fyy <) VF;W;) o EAQ 2y Wy — Fy (at X = 4[2)

+Fy=0 ...(6d)
In addition to these, the solution must satisfy the

condition
w=0 ... (6e)
at the supports (+a/2, 4-a(2).

The boundary conditions at the other edgesat ¥ = +
@/2 can be written down from similarity considerations.

General solution of the partial differential equation

Fourier methods are adopted throughout for the solution
of the boundary value problem.
The solution of the basic equation (3) can be expressed

as

Yy cosax ....(7)
n=1,30..

D =, + Xy cos fy +

m=1,85..




where @, is the particular integral, Xm is 2 function of
x, Yy a function of y, & = nrja and P = mc[b. The
integers m and 7 take odd values only.

ky COS 0%, substituting in equation
n=185..

Taking @p =

(3), and expressing the load intensity ¢z as

Jzie= % an cos G’.J? ........................ (8)

we get,

_ 9z fn

kn — D 05_4 (4——*__—“4_‘- EkleD) .................... (9)
Substituting the second term of the right-hand side

of equation (7) in equation (3), an ordinary linear differ-

ential equation in X,, is obtained. This yields the

solution :

Xim = cosh Yim %

where yim are the roots of the characteristic equation
Eh

. (Ym2— Ba)4+ D (rYm®— 1p?) = 0

The eight complex roots are explicitly given by

Y 1, 8 6 7 = + \/i'\/tcl + \/ (6.2 — de)l .. .. (11a)
Yot o 0= £ VAV £/ (e =4 a)] - (110)

where
S [Eh Lous,
cl=w+ar\[ﬁ”,;=«/—1

: Eh

Ca=p*+7 P Al D

C, and C, are the conjugates of C, and C,
respectively.

However, since cosh Yp,x is an even function, there

are only four distinct forms of X, and hence, in general,

Xm = Ay cosh Yim %
i=1,2,34

where Ay are complex constants, to be determined
from the boundary conditions and the restriction that
X is real.

Similarly,
Yn = Z Bin cosh Ay
1=1,234

where Bin are complex constants and A, are the four
positive complex roots of the characteristic equation

Eh
(ha? — a2)* + o (A2 — 7o) =0 oovniieinnn (12)

Thus ® can be written as

Aim cosh Yim
mel,8,..

@:Zkucosm—{—z [7
1=1,234

n=1,3%5

% cos By + Z Bin cosh Agp ¥ cOS ocx] .. (13)

=18 ..

Since the complex 10ots Yam and Yy are the conjﬁi:
gates of Yim and Yam, respectively, and @ is a real
function, it follows that A om and A, are the conjugatés‘.;;r
of Ay and Az, respectively. 1

Substituting for ® in equation (4a) the value obtained’
from equation (13), the displacement w can be expressed
as ;

W = by ¢ COS 0%
7 =13,

e Z [ Z (Yimd— B%)? A cosh Yim# c0s By =
1=1,2,3,4 m=1,3-..

4 Z (hin? — o2)? Bin cosh Mgy y €OS & x] --(lia)\'--"

#n=1,8...

Substituting for @ in equation (4D) the stress function
F can be written as

F=ZEha.2tk,,coso:x

ne=1,8..

(r3? —tYim®) Ay cosh Yim % €03 By

2 L
i=1,284L m=13,..

|- Z(taa— 7 hin?) Bin cOSh hin y COS & x) ] (140

ne=1,3...

Solution of the boundary value problem “

All the boundary conditions (6a—d) are given in terms of -
w and F which are given by equations 14(a) and 14(b),"
respectively. By substituting these expressions in the
boundary conditions a set of boundary equations in
terms of Ay and By are obtained. For example, equa tion
(6¢) at the edge y = b[2 yields

Z [Z [D (Nin? — &2)? (Mn? — vo?) By cosh }‘f‘"g '

i n

coS oX — (€ ()\ina‘—' Gﬂa)zo'.z }\i,n Biﬂ Silﬂl }\{,1; § COS 051:]

e Z C (Yim2 o 62)2 B Yim? Aim cosh Yim ¥ ]
m

- Z E Dyves cos ax = (Vi dhiee e (15}

n
Since this equation must hold good for any value

of x, it is necessary to €Xpress all the terms of the equas
tion in the form of a Tourier Series in #, so that this

~ functional equation can be reduced to an equation in

terms of the coefficients A¢m and Bin only.

To achieve this, it would be necessary to express cosh
YimX aS & Fourier Series. This can be done with the help
of Fourier Transforms.

For example,

, . I
4 — ;
cosh Yimx = s g cosh Yim® (o by

—_—— 2 a
D s AT il




otituting this in equation (15), the equation reduces and moments were done on an IBM 1620 digital
computer.
The results are presented in the form of contours in
' Fig 3.
R Z A C (Yim* — 32)2 B Aim? sin 1%7—: 5

e 1,8, e 3 -
] 1 Column
fo)
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cosh -—%’”— L Bin D (Mn®— ¢2)? : l

P

(Nn—va) ‘

: b
-._-_‘;_? — Bin C (Ma®— a2)? o? Ain? sinh l\%—]

quation appears in non-dimensional form in
lix I as equation (A3).
ndix I gives non-dimensional boundary equations
pendiz 1 I gives the various Fourier Transforms
d for their derivation. Fig 3(a) Contours for (0-5[3 % 108 w).
eight sets of equations (Appendiz I equations d
nd their counterparts for the edge ¥ = a[2) can
get the cocfficients Agp and Bin by taking
umber of terms of series, that is, by terminating
Hes in m and n after a few terms. For example,
| # can be restricted to have only four values,
171 y, ], 3, b and 7. This truncation introduces ap-
\ations in the effective representations of functions
ier Series. Errors in the stresses and moments due
runcation can be estimated by taking extra terms
! d 9) and comparing the two
results. However, such a procedure involves very
computations and it may not be always possible
ke an error estimate. 20ne of low
d Bin, the function @ is A epeoN

the values of all stresses Sk
und using equations (5). It is ;
oted that Aim and By, are complex but the func- Crown ——l— s
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Discussion :

The results appear to be satisfactory except near the
edges. Such a behaviour is not unexpected as the method
used — the Fourier method — cannot ensure fast con-

-vergence of series near the edges.

The determination of stresses and moments in a
doubly-curved shell supported on edge beams is a com-
plex problem from the point of view of mathematical
solution as well as that of computation. It may not be
possible for a design engineer to use exact methods like
the Fourier analysis, hence there is a need for develop-
ment of reliable approximate methods.

However, such methods must be carefully tested to
ascertain their range of applicability, using exact methods
or a series of experimental investigations for various

_ parameters.
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APPENDIX 1

Non-dimensional boundary equations

Notation : Ay = Ay, m?ja®

By = Bin n®|a®

Yim = Yim bmm

im = Mg a[nT

ky = kyndfab
K, =bja K, = =n|2K,
K, =ar K, =a
K; =hja K,, = C[Ea*
K,, = Eha?D K, = I;[at
Ky = Iyla* . K,, = A,la®
K,, =C|ED Ry = I[0t
Ry = Iyt Kiy = Ao[b?



. b/2
wing non—d1mens1ona1 equations correspond to the
quations 6 (a, b, ¢, d), respectively.

Am . ME
S o
1— Y K. ™ me —
m-l, " 3a—v) K (ﬂ’+ —gTim’)
1

"1): { @ —v) Yomi—1 } cosh 7 Ky Yim

sin — $re sin ﬂ
ke g 9 o () ts
Aim A K nh m? Bin e

5 ( 12 - thm )

m? = = dmYem
+ i ‘fim’) n tanh MKy Yom — —g }

cosh mKgYym

)

* KK, K
2

[ — K nimt (iiﬂ’—l)

i
2n (— 1) 7

i Js
B Tty o Ko K N (1 —;Mm’)

K= w(—1
;——2—11;,,,—35,1—(——)—-1{31(‘1{511“

23nd

iy Y

Bypt) sinn >

K K,

s (41

B) =0

sin

:_(Kn nt i K

mmw
Sln <

2

mﬁqm’
2
1

4ns n 2

mﬂ,—;‘
n? 4

)

3
K K K,

24(1_\;*){(2_””‘"'3”1}

¢ T 1)2 [
Kafim'] ] cosh m Ky Yym + B ™ [

1). + ( --—)qn )] % cosh 2
_ [Kn K, (1 —2 im‘) x {2+ ) — M}

Ky Ky K,
2

KE Kl
ntd nd

lm + By

Ky K
=y {24 (T 1-\a)(2”““"“")“"""I""'}]
T K, -
9 li\m
it K, T
‘(KHKI. 2” +Ks) =0 veea(A2)

fe1,2,84 me=1,3..

N
2

¢
K3 LR |
% cosh mKy Yim + Bin 7571w 12 (1 — v n’ Mn
% (i;,,"-——v) cosh ngK
fi 2
X (Mﬂﬂ_-l) sinh

iy s
i “12(1-\;%)»5 T

Lk

1=1,2284 me=1,3..

me
Kl

- S
! Min — Bin

Koz
prls

nr K -
“g M

~

4K Kg n
A 25— =

(1 — = Yimt ) cosh m Ky Yim + Bin

X (7\1"’+ v) (1 —= -:: 7_\,;"9) cosh 2E

?.m(l silivin )smh

I,
2

l &

Kq Mn

+ Bm

mEn
+

m=1,3, ..

m -I- n
n(—1)"2
(m? — n?)

im

2n? K,y K3
ms

mn K
cosh

v

—‘B{nﬂg K, Ka "'—-‘ (7\{,; —1) COS]J

- 4K K M
+ E Aim KE” sm‘ (1——Yim)s1n-—-sm—
m=l,3.
3 - - K — 1" K
% cosh m Kg Yim +knﬂ “(vK.—__H-.—( )2 ’)
Bt m+n
- n(—1)" 2
+ ki 2n* Ky K o5 (m? — n?) =0 e (Ad)
m=1,3,..

The equations for the edge » = a/2 can be written from the
preceding equations by interchanging # and y, Ay, and By,
and m and #. The various parameters are. modified as follows

(the arrow stands for © is replaced by ') :

. T
sin — sin —

..(43)
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The load terms need special treatment. Following the procedure
outlined for the edge y = b/2, the load terms for ¥ = a/2 are
found to b_e,

for equation A1:

sin "IT o, 1T
=, - ‘ mt 2 9
z Fn K Byt g

— v?) mn
n=13,..

for equation (A42) :

sin 2% gipn 2T
=, = T8 2 2
4 3
Z fn dyE B iy 6 (L —v?) mn

=13,

for equation (43) ; zero
for equation (A44) :

M . AT
2 25 sin —2 sin 'E-

ne=13 .,

APPENDIX 11

Fourier Transforms

Expansions for — a2 L » < + a,f’2_

4/ sin Ix
(1) cosh yx = __'__ﬂ___ cosh X2 cos It
t=1,8.. (n*+ ya?) 2 @

tsEn %41
. AKX 2al (—1) 2 Ity
(2) & s1n T = m—- COos ‘;—
t=1,3, ..
_ @ (—1)n nx
2w “a
E 2 alrw ( 1)1—_1
: R alg ( — 2 e
(8) # sinh yx = @y v F P cosh 3
PETES
X [(af y2-+ °n?) 4 tanh Tz—“ —4 ay] cos I—T;—x
— I—1
e 4(-—1) 2 Inx
4) 1= s
t=1,38,..

In cases (1), (2), and (3), in order to get an expansion in terms
of only odd values of /, the function is expanded as shown
Fig 4.
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