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and size of the cylindrical shell.

HODS of limit analysis are being increasingly
to determine the collapse loads of structures.
er of methods are available to estimate the
ailure of structures such as continuous beams,
gs, arches, plates and slabs with different boundary
s, For many of these the analysis is easily applied
ollapse loads can be found, For others the formula-
es complicated and, in certain cases, impossible.
ses it is usual to look for upper and lower bounds
apse load. Such bounds have been obtained only
mple structural shapes. Very little work has been
e application of methods of limit analysis to shell
her than shells of revolution. Fialkow appears
rst to give upper and lower bounds for the
s of partial circular cylindrical shells supported
n diaphragms.! In practical shell roof structures
shells are rarely without edge beams. Baker and
ve given methods of obtaining upper bounds for
oads of cylindrical shells with edge beams ; but,
the whole structure to be a simple beam for the
ence their estimates can be good only for long
h weak edge beams. Sawczuk reports tests to dis-

some shells and only indicates a possible approach
e the bounds, leaving the real problem unsolved.*

irticle a method to obtain good upper bounds for
ads of cylindrical shells with edge beams is pre-
\ method to obtain lower bounds has been given in
paper.S . :
stress resultants, yield surface, flow law,
| rate vectors

analysis presented here, it is assumed that the
5 isotropic and homogeneous ; the stress-strain
that of a rigid-plastic material ; the Von-Mises
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UPPER BOUNDS FOR COLLAPSE LOADS OF
CYLINDRICAL SHELLS il
- 5

by N. V. RAMAN and M. N. KESHAVA RAO*  \J

The upper bounds for collapse loads of cylindrical shells with edge beams of different rigidities
 are obtained by using the limit analysis theory. Three velocity fields are considered to cover different
' modes of failure. Typical values for the upper bounds are given in a table and are also shown

in the form of graphs. Similar graphs can be easily prepared for various parameters of shape

yield condition represents the initiation of plastic flow of the
material ; the uniform thick shell can be replaced by a
sandwich shell.

Fig 1 shows the positive direction of the forces Ny, Ng, S
and M¢. The moment acting on a shell element along the
«x direction is neglected. The radial shear force is not con-
sidered as a generalised stress resultant, as the work done by
this force is negligible. The linear approximation to the
Von-Mises yield condition for stresses oy and oy expressed
in terms of the generalised non-dimensional stress resultants
Hx, Mg, S and m results in a yield polyhedron bounded by
planes as given below.!

Face Equations fi = O

4 Hy — Ny — M = 1
B —75¢—ﬁi=i
C — g + 1y —m =1
D My — g +m =1
E — g+ m =1
F — gyt ng +m=1
G ng — M =1
H g -+ m =1
J fy = 1
K —iy — 1
L s=1
M —s=1

If #, v and w are the displacements along %, ¢ and normal
directions respectively, then the corresponding non-
dimensional strain rate vector components &, éy, y and Hy,
for a given velocity field (U, ¥, W) are obtained from

Ry ._(1>U _I_mV
E”_b_x- G 7355 V-
¢ W o MW Y
= (W) ==i(55tg ) - O
u v w :
where sz’, = andW:a..................(2)

The strain rate vectors are related to the generalised stresses
through the flow law ’ ‘ '

: i
€x = A; }TI; ......(a) S
i i :
y =N3Mids ... (c)

and Hx = N Mfgfom ..., (d)

where f; = 0, is the yield surface, representing the faces
A, B, C etc., and ); are positive constant coefficients. The

* Senior and Junior Scientific Officers, respectively, the Central Building Research
Institute, Roorkee. 4



NOTATION

B Nondimensional breadth factor for
: i
edge beam = 2
D Nondimensional depth factor for edge
beam = —
a
E : External energy
A,B, ... LM, Faces of the yield polyhedron
i Internal energy
I A constant = cos ¢,
K, K, Constants
2L Length of the shell
J2 Nondimensional collapse load factor
_ ba
" 90t
U Nondimensional displacement factor
: e 7
in x direction = i
V . Nondimensional displacement factor
in ¢ direction = %
W Nondimensional displacement factor
in radial direction = -E::-
X Distance from O in x direction
7 Distance measured along the depth of
the edge beam positive downwards
from the top of the edge beam
a Radius of the shell
2b _ Breadth of the edge beam
d Depth of the edge beam
h Nondimensional thickness factor = 2%
" Nondimensional moment factor =
1y
o,f?
Ny Nondimensional force factor in «
direction = AL
T 20t
N Nondimensional force factor in ¢ |
g Ny
dlfectlon Yl

P Uniformly distributed load per unit
- area of shell surface
7 Nondimensional radius parameter = g
s Nondimensional shear force factor =
S
20,
2 Thickness of shell
" - Displacement of the shell in x direc-
tion
Y Displacement of the shell in ¢ direc-
tion ; ‘
w Displacement of the shell in radial
direction
x Nondimensional coordinate distance
in x direction = {
L
2 Nondimensional coordinate distance

measured along the depth of the edge

beam from top of the edge beam = é

Oy Stress per unit area in # direction

(7S Stress per unit area in ¢ direction

Go Yield stress of the material

Tegp Shear stress per unit area

o Semi central angle of the cylindrical

. shell

¢ Angle measured along ¢ direction

‘il:;:ﬁ‘f"i) o }Angle parameters

Ex Nondimensional strain factor in x

_ direction

€4 Nondimensional strain factor in ¢
direction

Y Nondimensional shear strain factor in
x-¢p direction

o Rotation of a portion of shell

) Angle subtended at the centre by the

' axis of rotation

3 Nondimensional vertical displacement
factor = Afa

A Vertical displacement

Hx Nondimensional curvature factor in

¢ direction

flow law, in other words, simply states that during plastic
flow of the material associated with a yield state of stress,
the strain rate vector must lie on the outward normal to the
yield surface at a point on the surface corresponding to the
given yield state of stress.” If the yield surface consists of a
number of intersecting planes, as in the present case, then
the strain rate vector is normal to that plane which repre-
sents the stress state of the point under consideration, and
points outwards. If the stress point lies on an intersection of
two planes or on a vertex, then the strain rate vector must
lie between the outward normals to several intersecting
planes.

A kinematically admissible velocity field is one which
satisfies the following conditions :

(#) It must satisfy the velocity constraints on the
structure ; namely the continuity requirements and
boundary conditions,

() The total external rate of work £ done by the actual®
loads P on the proposed velocities is positive. '

(¢) The strains vanish everywhere except on yield lines.
It may be seen that certain discontinuities in the velocities

are permissible provided the above conditions are not';
violated. !

The upper bound P is then obtained by equating I, the"
total energy rate, due to all the internal forces in the struc-
ture at collapse to E, the total energy rate due to external
loads moving through the proposed velocities, Then,

I = 2c,tla J'I('Jlfx £y -+ e éqs !
+{S/—_y - mH)dddx .. ......(0)

3 ;
-|- energy rate in the edge beam s
E =%,tLa [[P38dd dx Cni (O
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-arbitrary velocity field is selected such that it is
tically admissible and the expression for P is minim-
. by varying the field, then P, is a good upper bound
apse load.

ically admissible velocity fields and upper

hree velocity fields are considered in this paper and
tr bound P, is found as the lowest of the P’s given

elocity field I is selected so as to correspond to the
nt pattern of a simply supported beam at collapse.
plastic curve (or yield line) A B separates two rigid
.- In the first case the rotation of R, is about a
axis passing through ¢ = = ( at the ends of the
‘2a). In the second case, (Fig 2b), the axis of rota-
iken to pass through the edge beams at the ends of

case is applicable to shells having shallow edge
nd the second case to shells with deep edge beams.

1), when the axis of rotation passes through &b = +
With the displacement pattern symmetrical about
% = 0, the quarter shell O<dp<<dpy, O<x <<l is
the displacement field in region R, is given by

¥(cos p — cos ¢) in the shell, O<hp<<d ..(8a)
(cos B — cos ¢ -+ z) in the edge beam,
O B R R e R R (8b)

x

A x) sin ¢, S (B)

IR )icos o e s
be easily verified that the above displacement field
boundary conditions, namely, V = W = O at
W is continuous throughout. The rigid body
e displacements in the region R, is also easily
€A DY the fact that the strains ez = ¢g = Hx =y = 0.
Velocity field corresponding to the displacements (8)

is, therefore, kinematically admissible. The discontinuity in U
gives rise to a strain in the direction x along the plasticcurve
AB. As discontinuities in V' and W do not exist along 4B,
the strains due to these are zero. The internal energy, there-
fore, is only that due to e, Denoting a discontinuity in U
by U], we have

Ulsher = o (cos p — cos ¢)
Ulpeam = ar (cos p — cos ¢ -+ 2)
Ulsnen =0 for O<¢p<p

Ulsneu =0 for B<dp<do

and Ulpeam =0 for O<z<D

Then,

The applicable plastic regimes for the strain e; correspond-

ing to the above discontinuities (selected from the table on

page 172) are :
Ny = — 1,
gy = + 1:

Then, from equation (5), the internal energy in the typical
quarter shell due to 2, = - 1 and e, may be written as

0=¢=p
P=d=1do and O<z<D.

B
I = 20,tLa. (—1)ar(cos f — cos ¢) dd
[/
%o
+f (++1)(ewr) (cos B — cos &) do
[5 %

-]-%f(-{wl)(cos B e St rlz]
0

= 20,tLaur { o cos B —singo —2 Bcos B+ 2sin P
D Dz
+-(cos B — cos o) 5 1Tsp

From equation (6), the external energy in the quarter shell
due to the vertical loading of p per unit area of shell surface

18
! ¢0 5
E = 2cotLa Pf f Sdipdx
: 0 0

where § = vertical deflection =; (1—x) from equation (8)

Hence E = 20,tLa P % B A (10)

Equating equations (9) and (10),
P — 2/2/dbo { bo COS B — Sin ¢

2
H2[5cos[3+25ilxﬁ—[—(cosp—cos(!,o)g+‘22§
.............. (11)
: D
 For P to be minimum, { =;-{¢a + B} L iy

P,, the upper bound for the displacement field (8) is then

given by equations (11) and (12).

Case (i1), when the axis of rotation passes through the edge
beam (Fig 2b): The displacement field (8) gets altered only in
U : i

U = ar (cos ¢o — %o — cos ¢) for O0<p<do....(13a)
U=ar(z—2)forO<a<D ............ ....(13b)



: Equations (1)33.) and (13b) along with (8c) and (8d) define the

displacement pattern for the velocity field shown in Fig 2 (b).
The only discontinuity is in U and is given by

Ul = ar (cosdo — 2 —cos¢) and is <O, .i1,1
0<dp<do

U] = ar (z — 2,) and is <0, in 0<z<<%

U] = ar (z — 2,) and is >0 in 2, <z<D

As before, the applicable plastic regimes corresponding to
the above mentioned discontinuities are

Hy = — 1 in 0<$p<do and in 0 <z<?
e = -+ 11n 2o <z2<<D,

From (5) the internal energy due to these forces and dis-
continuities may be written down as before.

2
re 2cotLaocr{sin o — bo €05 o oo + o

D2 20D }
+ 2—B = _B'_" LRI IR R A ) (14)
External energy E remains the same as in equation (10).

: :
From equations (14) and (10), P = % -{ sin ¢o — o COSo
ZO2 ZGD D2}
+ dozo +T§ T _{_21—8
P is minimised by chosing z, = } {D — Bd;a}

Then Py, the upper bound for case (ii), may be found as

. 2
P, = 2 { sin o — o €08 o ¢ g
do- 2
1

+I§(D+B¢o)2}

Velocity field 11

Consider an yield pattern as shown in Fig 3. The right
portions R; and R, are separated by a curved yield line EB.
It is assumed here that the edge beams are very strong and
the failure is taking place because of yielding in the shell.
The shell separates itself from the edge beam forming a
plastic hinge and becomes a mechanism.

Consider a velocity field corresponding to the following
displacement pattern.

In region R,,

o (10)

U = ar(] — cos ¢) s (1 0a)

V:% (RSN S Eh g S v i (16b)
and W =2 (— =) cosd oooiiiiiiiiiiiiiiin, (16¢)
In region R,, o

D=0 s Shptm e s rn i e B (17a)

Yield lines
]
i o :-c.E Ri
oV —l——'—L X, %,
Ry

G B
oV

Fig 3

V = % (1 — xq)cosecdy { €08 ¢y COS ¢ - Sin dpo Sin ¢.

)

W = %(l — %) COSEC dho {cos ¢ sin ¢, — cos d;u

e (1T

sin ¢ }
where J is an arbitrary constant which has to be chosen ol
minimise P, :
The boundary and continuity conditions for the velocity 4
field are as follows : B

Boundary conditions :

V=W=0at¢=d,inregion Ry .......... (18a)
V=W=0atx=1 inregionR; .......... (18b)~
Continuity conditions :
W rs, is continuous along ¢ = 0 in o<x<#; .. (1921);;'
Wiy = Wny, along the yield line EB ........ (19b)

It may be easily verified that the velocity field corresponding 3
to equations (16) and (17) satisfies the requirements of
equations (18) and (19). It may also be verified that, the®
conditions for rigid body motion are also satisfied. The:
velocity field shown in fig 8 is, therefore, kinematically
admissible. i

The equation of the yield curve satisfying equations (16),~
(17), and (19) is : ]

(x — %) = (1 — #;) cot g tan ¢ Dt (20a)'f,‘
which on differentiation gives -:__:
dx = (1 = x,) cot ¢, sec’pdd ceevee. oo (20D)

Yield line OE
Discontinuities along ¢ = 0 are

ujl=0
) o :
V] = - (1 — %) cosec ¢y (cos ¢p — 1)
YW o
s S (1 — 2,) cosec g €OS dhy

It is seen that ey and y corresponding to the above dis=
continuities are zero. From the above, it may be seen that
the strain rate vector component &g is always negativeand:
Hy% is always positive. (és- Hx) is negative provided
7 < (1 — cos ¢o). This condition is always satisfied in
practice. A stress state for the strain rate vector mentioned
above is next selected. The selection of the face of the yield:
polyhedron should be such that és is always negative, Hx
is always positive (&g - Hx) is always negative and €z =1
v = 0. From the equations of the faces of the polyhedron:
given on the table on page 172, the only intersection satisfy=
ing these conditions is between the faces B and E given by
8

—m—ng=1......B
dm—ng=1......E 4
The intersection of the faces B and F gives nng = —1 and !

m = 0. From equation (5), the internal energy along the:
yield line OF is 3

(1—=x,) cosec ¢ 7(cos $o—1)dx

|

1
o= 20'015[,(1./‘ (=1

¥

= 20,tLa { % (1 —%,)%, cosec ¢ (1 — cos ¢y) } A .(21)‘{;

E



inuitics along ¢ = do

¢ stress state can be easily selected as m = +-1.
1 energy along the yield line GB can be now

DR

tion for the curved yield line EB from equation
- %) = (1 — #,) cotdp tand. To determine the
ies in the coordinate directions, it is necessary to
al jumps across the yield line £B.® The jumps
ements U, ¥V and W in the direction N (Fig 4)

arl J — cos ¢)
:-f’(l — %) cosec o (1 — sec & €05 do)
= ?(1 — %;) COSEC ¢hg COS dho SEC

s;in the coordinate directions x and ¢ are
= o#(] — cos ¢) cos ¢,
or(] — cos ¢)(—sin ),

;E (1—x,) cosec o (1—sec dcos q;o) (—sin {),
2 (1—xy) cosec o (1—scc  cos o) cos §,

% (1—x) cose o COS dho S€C ¢ COS ),

% (1—;) cosec o o3 o sec b (—sin §).

o EL v

Fig 5

Replacing J by cos ¢; where ¢; < o, the signs of the
strain rate vector components corresponding to the above
discontinuities may be written down from equation (1)
(Fig b).

gz 18 — ve in 0 < <y, Zone 2,

€z 18 -- ve in ¢y < <dho

gp is —vein 0 < <¢o

Hy is 4 ve in 0 < <o

(e + H¥)is —vein O <p<ds .

(8¢ + Hi) is - ve in' ¢z < <o, Zone Z,

¥ is 4 ve in O <P <o,

¥ is — ve in ¢y < <dos

COS ho

e s (23)
and sec ¢, = V/(sec ¢o S€C dy) S (24)

Vertices or intersections of planes on the surface of the yield
polyhedron representing the stress state to give the strain
rate vectors corresponding to the discontinuities discussed
above may be found so that the stresses satisfy the flow
law (3).

For Zone Z,, O <¢ <d¢;, the point on the surface of the
yield polyhedron with the coordinates #y = — 1, s = -1, -

where cos ¢y =

- ndp = — 1 and m = 0, satisfies the requirements of the flow

law for the strain rate vector (e, g%, H%).

For Zone Z,, ¢y <¢ <¢g, two points on the surface of the
yield polyhedron satisfy the flow law. The strainrate vector
component ¥ is, however, independent and the energy due
to shear s is determined separately. The two points on the
yield surface satisfying the flow law for the strain rate vector
(€z, e, H¥) are 51z = O, np = — 1,m = -+ 1and 5y = |1,
np =0, m = 0.

As I is a small quantity, ¢g = ¢ from equation (23) and -
hence zone Z; need not be considered. The energies in these
different zones may now be written using equation (5):

~ b1 53t
Iz, = 204tLa [ou:/‘ (cos ¢y —cos $)(—1)dd
; { e \
-+ f(-—l)(—) % (1—%,) cosec ¢o(1 —sec ¢ cos ¢,,)dx] ;

*1




= 20,tLa [ocr(sin b1 — 1 €08 1)

-+ ? (1—24)2cosec docot do { tan ¢,

c0s ¢o

e (sec ¢y tan ¢ -+ log sec ¢y + tan ¢1) } ]

Iz, due to 5z = -+ 1, np = 0, 1 = 0, results in

¢o
Izya = 200tLa [ o (cos by — cos §) d
Dl :
= 2cotLa[ocr{ 08 b (po—Py) —(sin do—sin ¢)1)} ]
: A MR (26a)
Iz,b, due to 1z = 0,np=—1,m=+1, results in Tz,b =

26qtLa ; (1 —2x,)% cosec & cot <b,,[(tém o — tan dy)(1 +h)

= CB%@ { secdo tan do — sec ¢y tan ¢, -+

secdy 1 tan o
log secd, | tan ¢1}] o

Energy due to ¥, Iy is

Waiir e (26D

by
Iy =204 La[oc(l —X)COSEC (b(f (}—132 (1 —cos docos dysec?d)dd

]

$o
+4-a(l —x;) cosec 4)?['(_\%1;)(1 — 05 ¢oCOS ¢5ec? ¢)d¢]
ba :

= 20,tLa %9_’ (I — #,) cosecdo [2¢q — o
— 9 coSdro COSy tan g + sin o €OS byl ..nn (27)

where ¢, is as defined in equation (24).

Total internal energy for the quarter shell, 0 <¢ <o,
0 <x <1 may now be written as

Ia = Iz Iza+IyA-Toe+IGB
and Ib = Izl—I—Izzb+I-?,-+IoE+IGB e (28]

It can be shown that I, is less than Ib and for minimum
internal energy only I is considered in the following
discussion. i

_ quantities %, and ¢,. These quantities should be so chosen as

_ differentiated both with respect to ¢, and with respect t0 %

Section c-¢'

¢ beams
id

Edg
also Yiel

Fig 6

External energy E

From the displacement field (16) and (17), the vertical
deflection 8§ is

8 = ; (1—x) N TEGION Ry v ovvveeeerrnereenes @

and 8= :E(l — %) COSEC g (SiN hp—SiN ¢) in region R, (29D)

Using equations (6) and (20) together with equation (29), the
external energy E for the quarter shell 0<¢ <, V< <1, 5

E =20tLa Pg (1 —=,) cosec ¢ [ (l_—gx—l) cosec o { o Sin ¢y
-+ cos? ¢ (tan ¢ — &) +2 €05 o sin ¢y
—2 c0S o loge (seC do-f-tan o) }

..................

+ %,(c05 do-tpo sint o —1) ]

Using equations (28) and (30) in equation (7), P’ is found from§
Dl o s A OB OISO DT (31)
It may be seen that both Iq and E contain arbitrary

to minimise the value of P resulting from equation (31). The
resulting expression for P from equation (31) may be

and equated to zero. These two equations may be solved for
&$; and x;. In most of the practical problems the value of ¢y
to give a turning value of P is greater than ¢,. Hence it 15
sufficient to solve for x; only and then to select a value for
$, to make P minimum. It is found, for a value of ¢y = 40°,
{hat P is minimum for ¢; = 0 and x; = 0. The values of
Py, given in Table 1 correspond to ¢; = 0 and x, = 0.

Velocity field 111

Consider a yield pattern which is a modification of velocity
field I as shown in Fig 6.

Table | Values of Py (upper bounds to collapse loads) (corresponding values of . are given in brackets).

& 0-2 04 06 0-8 10 1.2 1.4 1-6 1-8 2.0
0-000 00048 | 0-01869 ©0-0284  0:0380  0:0475 0-0567 0-0661 00746 0-0843 00910
; (6° (10°) (15°%) (173°) (20°) (22%°) (224°) (25°) (26°)
0025 00066 | 0-02634 0-0439  0:0638  0-0866 0-1120 0-1383 01686 0-2015 0-2365
: (787 (12%°) (17£°) (20°) (20°) (223°) (22%°) (256°) (25°) \ rie1q 111
0:060 0-0086 0-0344 | 0:0665  0:1047  0:1509 0-2059 0-2733 0344 0-4273 0:517 15
(123°) (124°) (17%°) (20°) (20°) (224°) (224°) (224°)
0075 0:0110  0:044 0-0964  0-1694  0-2390 0-3350 0-4475 0-5776 0-7255 0-8905
(124°) (16°) (156°) (17%°) (175°) (17%°) (174°) (17%°)
0100 0-0132  0-0527  0-1185  0:2106 03202 0-4742 06450 08430 1-068 1-316 e
0150 0-0173  0-0691  0:1554 02763 0-4320 0+ 6220 0-8460 1-105 1-398 1-728 }F‘eld
0-200 0-0214  0-0855  0:1924  0:3420  0:5345 0-7690 . 1:0460 12917 1-5371 1-8047
0-250 0-0259  0:1038  0-2332  0:4150  0-6486 | 0:8569 1-0647 1-2017 1-5377 1:8047 \ e 1
0-300 0-0311  0-1245  0-2800 [ 0-4967 - 0-6662 08559 1-0847 12017 1-5371 1-8047 5
0-360 0.0360  0-1472  0-3314 | 0-4967  0:6662 0-8559 1:0647 1-2917 1:5377 1,8047




Yield line AC (shell only)

1o vield pattern shown in Fig 6, Iy cannot have any .
: ' Discontinuities at ¥ = O from equation (82) are

ents. Therefore, for Ry,

........................ DOER (193) U- o S
g : = — ) —sin(p—
.................................. (32b) e e Bleab aiilvatins
- B =V]=O; U]:O.
displacement field for region R, in the shell portion : @ z ¢
w]=w]-o
. s % 1¢ z
= or { Ki(b—p) —sin(p—p) +Kp } eeee(32d) SW ] 0
Sl
1— ;
A 7 ) {KI_COS (b—w } cevnee e (82€) The strain rate vector components £, Hi and ¥ corres-
ponding to the above discontinuities are zero. The sign of

&, depends upon K, the arbitrary constant.

=% o Gy ). i e DO s (32f)
% If K, is defined as :
edge beam K, = K,(p—0)—sin(z—9) e (30) 8
o ~ then for . > 0, .
J = ars Ky (bo— —sin (po—p) +K e
{ 1 (bo—14) ho— 2 Iscy = 26otLaar {K1 (ﬂ’_"_g_*’_‘)_ -|-cos(do—)
+ (K, sin ¢o— sin p,)z} o e (928)
3 +Ky(po—p)—1 } ...... (36a)
a(l—%) ; o : ¢ :
=—— { K, sin dyy— sin } S Py (52h) i sin (—9) +.5m B (36)
<,, Ky and p. are arbitrary constants which are chosen (b —0) +sin(bo—p)
¢ minimum P. and for p. <9,
he displacement ficld (32) satisfies the continuity condi- —p)?
long ACE and AB, mamely, U =0, V =0, and I acy = 200tLaor [K1{(i)°—2—('4 — (0—p)?
along AB (¢= ), and the boundary conditions
3D, namely V = W =0 at x = 1. The displacement + cos(o — p) — 2 cos(0 — p) +1
2) also satisfies equation (1) for the rigid body nature
lacements as the strains vanish. The velocity field, + K, { (bo— 1) +2(1—0) }] Saenig s {(308)
onding to the above displacement field (32) is, there-. 1 3
1ematically admissible. provided K, > sin (0—p) /(60— e (86d)
line AB -
ontinuities along ¢ = (. from equation (32) are, e \ : ) -
; B= 025
= ar I<,, Ul =0 \ h = 000156
o] _ i) b"’ L
- oll —x P Sl
% i 08 3 [ ;
— \‘
_a(l—2) : W1 _ 0
do 4 ! p |z A
direction of the strain rate vector may now be ]
: 0:6 Velocity
o2 tield M |
€= 0; é4is —wvefor K; <1; s
%is — ve and ¥ is + ve if Ky is - ve. v
o
>

ing the face (—m —ng = 1) on the yield polyhedron,
mum internal energy satisfying the strain rate

o
S

e

d flow law, K, should be 1 Theinternal energy

; 144"
onding to the above discontinuities may be written as -
e i 02
26,1La j{ampm%xm_wa
?f' 0 ) 5
Lo - J 7 =°-2 |
/ (=) %(Kl—l)(l—x)derf"—‘EE dx > ....(33) s s ]
0 V3 ; 9% ol o2 03
h o othl Values ot D
+h)27’ + —'\_/T'ifg othl .............. (34) Fig 7




———

H [EEa] i I

B = 0-25

7 e h = 0:00I56
@o = 40’
V.F. = Velocity tield
'.4____
12
ﬂ.’
5 lo|——
“
2
CAH !
06 .0
“ o
\‘}'Q”
0.4 A
: [o)
0"/&/
o2= /%/%
L /_,//
o//%é/

[¢] 0-2 04 0:6 08

Fig 8

It can be shown that energy for p. > 0 is always greater
than that for 1 << 0 and the latter case alone is considered
in the following discussion. 3

Yield line CE (edge beam portion)
Discontinuities at x = 0
Ula = o {Ky(o—ts) —sin(bo—p)
+ (&, sin ¢o—sin p)z-+-K,

The internal energy corresponding to the above dis-
continuity may be determined as before.

ICE = 204¢Laor [ I—B) {K1(¢0~u)h- sin(tj:,:,—pu) -{-K2}

D2 ; :
+2—B. (K sin ¢p — sin ) ] Lot H o ..‘(37)
The total internal energy in the quarter shell is
I="TAB |- TAC, - TCE o s o (38)

External energy

External energy due to the loading i‘n the quarter shell
0 <<y, 0 <x<<1, may be found from equation (6).
The vertical deflection :
3 = Vsing + Wcos
= “(lr_x) (K sin —sin p)
Then from equation (6),

E = 204lla %? {K 1{Cos . — cos )

—(o— ) Sir_lu} e

The expression for P may be written by equating E and T
and differentiated with respect to p and 0 ; these may be
found to make P minimum. The values of p. and 6 should
satisfy the inequality (36d).

Discussion :

Table 1 gives the valiies for the upper bounds for various
parameters of shape’of shell and size of edge beam, The

Values of r

B (a0))

10 2 4 16 8 2.0 me

upper bound Pu is plotted against the non-dimensionall
radius to length parameter for various values for D in,
Figs 7 and 8. The upper bounds given in Table 1 and plottgé
in Figs 7 and 8 are worked out for a value of ¢, = 402§
B = 0:26 and = 0:00156. Figs T and 8 are drawn to shoy
“the variation of the upper bound with # and D. For other
values of ¢, B, and /, the upper bounds may be worked ot
from the equations derived earlier.

It can be seen from Fig 7 that for values of 7 less thai
unity and for shallow edge beams the velocity field I (tagSS
beam mechanism) gives larger values for Pu than those from
the velocity field III, The increase in Py value with thel
increase in D is marked especially when 7 is greater than
unity (i.e., for short shells). The region in which the velocit
field I holds good is clearly shown in Fig 7.

Beyond a certain limiting value for D, any increase 1§
_depth of edge beam does not increase the strength of the
shell, The failure takes place entirely within the shell. Thisf
limiting value for D is found from velocity field IL Tl{is 7.
value is usually so large that failurein most cases takes plat
when both edge beam and shell yield. :

Though other velocity fields may also exist, excepting 101
very short shells, the velocity fields considered here qurl_._ -
well represent the usual failures. The upper bounds givelis
here, however, are not to be mistaken for the actual failures
loads. These lie in between the lower bound and the uppésg
bound. To estimate the collapse load it is essential to carfy
out both lower bound analysis and upper bound analysi
For long and intermediate shells a previous paper explail®
the lower bound analysis.® ¥

The upper bound analysis presented here is for an isotropss
and homiogeneous material, as is assumed in the elasti®&s
analysis of shell structures. The material is also assumed f.ﬂ
obey the Von-Mises yield condition. It is not known how f=.
this yield condition which was primarily put forth for metas
can be modified for reinforced concrete. Further experimenta
investigation on reinforced concrete structures to study thet!

behaviour at yield with the specific intention of evolving g



condition similar to the Von-Mises yield condition is

gthod outlined is applicable for any yield condition
han Von-Mises. A yield condition for reinforced con-
can as well be used when this becomes available.
aps this may increase the complexity of the problem
use of the increase in the number of parameters such as
f steel in coordinate directions, etc. But the procedure
the same.

imensions

00 it 2 % — 0-03048
0 ft D = ‘[_f —0-125

ft v =§ —0-8

¥ ; — t p— . ; R
0-82 ft h = o 0:0015625

mum value for Py, is obtained from the velocity field I,
Using equations (11) and (12),

Py =0-225

The lower bound for this shell, worked out in a previous
paper®, is ; :
P, = 0-0931
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