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GANGA CANAL SYSTEM

The Ganga Canal, one of the oldest water-carry-
ing systems in India — the main canal stretches
over 563 km and carries as much as 6750 cusecs
of water — was constructed between ap 1839 and
1858. In all the canal works, lime and surkhi mix-
tures were used as the mortar.® Lime was obtained
through calcination of highly calcareous limestone
from the quarries of Dehradun or collected from
river basins in the area; it generally is fat.
Enhancement in hydraulic strength was achieved
through the incorporation of surkhi and wet
grinding of the mortar. Generally, one part of
surkhi was mixed with one part of lime by volume.

EXPERIMENTAL

Twenty-five samples of the mortars were collected
from different locations. These were subjected to
thermogravimetry (TG) and differential thermo-
gravimetry (DTG) analysis and differential
thermal analysis (DTA), using an STA-1500.
Simultaneous Thermal Analyser. The rates of
heating were maintained at 10°C/min and the
temperatures were measured with a platinum/
platinum-rhodium thermocouple. A sample of
alumina was used as the reference material. The
X-ray diffraction (XRD) patterns were obtained
by means of a Phillips X-ray diffractometer
(Model PW 1730), using Ni-filtered CuK, radia-
tion. The powder specimens were placed in a
recess in a plastic plate, and compacted under suf-
ficient pressure to cause cohesion without the use
of a binder. The results obtained were compared
with data from the ASTM powder diffraction file.
To, estimate free lime, 1 g of sample was re-
fluxed with 10 ml of acetoacetic ester and 60 ml
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of isobutyl alcohol for 2 h, cooled, filtered under
vacuum and titrated against standard perchloric
acid solution, using Thymol Blue as indicator.
The results are reported in Table 1.

For the determination of pH, 25 g of powdered
samples were shaken for 2 h with 100 ml of
double-distilled water, allowed to stand for 22 h,
filtered and the pH determined (Table 1).

The results of investigations on three typical
cases are reported below.

RESULTS AND DISCUSSION

The most prominent observation in DTA curves
(Fig. 1) is a very strong endothermal effect
observed between 734 and 832°C, characteristic
of calcium carbonate decomposition. This obser-
vation is supported by strong peaks in the XRD
(Fig. 2) TG (Fig. 3) and DTG (Fig. 4) curves.
These changes can be assigned to the decomposi-
tion of the mineral calcite.

The DTA curves also show (i) fairly well-deve-
loped endotherms in the region 686-695°C; (ii) a
weak yet sharp endotherm around 575°C; and (iii)
a sharp exothermal effect at 174°C (only in one

sample). The TG and DTG analyses show weight

losses corresponding to (i) and (iii) only. Of these,
the endotherms at 575°C (not shown by DTG) can
be assigned to transformation of quartz. This fact
is also strongly supported by the XRD results.

Table 1. Free lime contents and pH values of the samples

Sample Free lime pH
(%)
LM-1 011 74
LM-2 0-15 7-8
LM-3 013 76
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Fig. 1. Differential thermal analysis curves.
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Fig. 2. X-ray diffraction curves.
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Fig. 3. Thermogravimetry curves.
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Fig. 4. Derivative thermogravimetry curves:
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The XRD patterns also indicate the presence of
small amounts of magnesite at 33° 26 in all three
samples, whereas there is no evidence in TG or
DTG curves. Newton and Sharp* made the same
observation in the TG curves of plasters with low
magnesium content.

The records® show that the actual amounts of
pozzolanic materials incorporated into these
mortar mixtures were not substantial — at any
rate, they were far from the optimum ratios of one
part of lime to about three parts of pozzolana.
Moreover, the pozzolanas were obtained by
grinding bricks and consequently were not of very
high reactivity. Considerable fractions of lime may
therefore fail to enter into hydraulic reactions and
may actually behave as a non-hydraulic lime. This
is probably why there is little evidence of the pre-
sence of products of hydraulic reaction.

CONCLUSION

The plasters from the Ganga Canal System are
heavily carbonated. There is no evidence of
calcium hydroxide being present. On the other
hand, there is evidence of the presence of poorly
crystallized or amorphous calcium carbonate; this
could have resulted from sudden changes in con-
centration of calcium carbonate or the carbona-
tion of amorphous calcium hydroxide as it
formed. The reaction products of lime and silica
and/or lime and alumina reactions are scarcely
present.

As the reactants are present in far from opti-
mum concentrations, the hydraulic constituents
may not have been formed in large quantities.
Alternatively, they also might have undergone
carbonation.
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